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Abstract  

AmSel, a new system for the hydrometallurgical separation of only americium from HAR is 
presented. A water soluble BTBP (bis-triazinyl-pyridine), SO3-Ph-BTBP, is used to 
selectively strip Am(III) from a TODGA solvent loaded with Am(III), Cm(III) and Ln(III). First 
results from liquid-liquid extraction experiments prove the feasibility; the separation factor 
between Am(III) and Cm(III) is 2.5, independent of HNO3 and SO3-Ph-BTBP 
concentrations. Monophasic complexation studies show that SO3-Ph-BTBP forms 1:2 
complexes both with An(III) and Ln(III). Differences in stability constants of the Cm(III) and 
Eu(III) 1:2 complexes explain the selectivity observed in extraction experiments. A 
tentative flow sheet is presented 

Introduction  

The concept of recycling transuranium elements (TRU) in advanced nuclear fuel cycles 
could lead to better resource efficiency and more compact geologic repositories for high 
active wastes. The required chemical processes — both pyrometallurgical and 
hydrometallurgical — for separating TRU from irradiated nuclear fuels are under 
development in many countries. Hydrometallurgical processes could be implemented as 
an extension to the PUREX process, separating uranium, neptunium and plutonium in an 
advanced PUREX process,1 followed by the separation of americium and curium from the 
PUREX raffinate. In Europe, DIAMEX and SANEX processes have been developed for 
this task.2 More recently, processes integrating DIAMEX and SANEX have been 
developed,3,4,5,6 such as 1c-SANEX and i-SANEX. Alternatively, GANEX processes have 
been developed for co-separating TRU in one process.7,8,9,10,11,12,13  

However, the recycling of transuranium elements as nuclear fuel is complicated by the 
presence of curium. Its short term high decay heat and neutron emission requires remotely 
handled fuel fabrication under continuous cooling in neutron shielded hot cells. Since 
curium does not contribute significantly to long term heat load and radiotoxicity it could be 
routed with the fission products for final disposal after decay storage. Thus processes for 
separating americium from curium have been developed. Some of these rely on the 
oxidation of americium to higher oxidation states,14 making it extractable by e.g. TBP. 
Other processes exploit the more or less pronounced selectivity of some solvents for 
Am(III) over Cm(III).15,16  

The americium-curium separation would be placed downstream of the SANEX process. 
Preferably, this separation should be located early on in the process sequence. Hence, the 
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French EXAm process was developed and successfully tested,17 separating only 
americium from the PUREX or COEX™ raffinate. EXAm combines a malonamide 
extracting agent and a hydrophilic diglycolamide to co-extract Am(III) and the light Ln(III), 
followed by selective Am(III) stripping using a polyaminocarboxylate.  

Alternative processes are being developed in the framework of the European SACSESS 
project. Starting from the i-SANEX system4,5,6 using TODGA to co-extract Am(III), Cm(III) 
and lanthanides and SO3-Ph-BTP18 to selectively strip Am(III) + Cm(III), the AmSel 
(americium selective separation) system was developed. Replacing SO3-Ph-BTP with 
SO3-Ph-BTBP (6,6’-bis(5,6-di(sulfophenyl)-1,2,4-triazin-3-yl)-2,2’-bipyridine,19 Figure 1), 
AmSel makes use of reverse Am(III)/Cm(III) selectivity (TODGA prefers Cm(III),18 BTBP 
prefers Am(III)20).  

 

Figure 1. SO3-Ph-BTBP. 

The AmSel system — first results   

It is expected that combining TODGA and a water soluble BTBP, namely SO3-Ph-BTBP, 
would result in a system able to separate Am(III) + Cm(III) from Ln(III) but also able to 
separate Am(III) from Cm(III) + Ln(III) with a selectivity for Cm(III) over Am(III) of 
SFCm(III)/Am(III) ≈ 2.6 (the product of TODGA’s and BTBP’s selectivity, being SFCm(III)/Am(III) = 
1.618 and SFAm(III)/Cm(III) = 1.6,20 respectively).  

Distribution data were determined for the extraction of Am(III), Cm(III), and Ln(III) from 
aqueous solutions containing SO3-Ph-BTBP in HNO3 into organic solutions of 0.2 mol/L 
TODGA + 5 % vol. 1-octanol in TPH. So far, not all data from alpha spectrometry and ICP-
MS are available; in these cases only Am(III) and Eu(III) distribution ratios determined by 
gamma spectrometry are given.  

The dependence of Am(III), Cm(III), and Ln(III) distribution ratios on HNO3 concentration is 
shown in Figure 2 (with an earlier and less pure batch of SO3-Ph-BTBP, batch #1) and 
Figure 3 (with a purer batch, batch #2). Under the experimental conditions applied, DAm(III) 
< 1 and DCm(III) > 1 for 0.7–0.8 mol/L HNO3, with SFCm(III)/Am(III) ≈ 2.5, which is in good 
agreement with our expectations. Distribution ratios for Eu(III) are much higher than those 
for Am(III) and Cm(III); SFEu(III)/Am(III) ≈ 200 for 0.7–0.8 mol/L HNO3. SFEu(III)/Am(III) decreases 
with increasing HNO3 concentration, as already observed with SO3-Ph-BTP.18 Generally, 
Am(III) can be separated from Cm(III) + Ln(III) in 0.7–0.8 mol/L HNO3.  

The dependence of Am(III) and Eu(III) distribution ratios on SO3-Ph-BTBP concentration is 
shown in Figure 4. The slope for log DAm(III) vs. log [SO3-Ph-BTBP] is −1.3, the slope for 
log DEu(III) vs. log [SO3-Ph-BTBP] is > −1 (actually showing a curvature). The flatter slope of 
DEu(III) vs. log [SO3-Ph-BTBP]  is explained by DEu(III) approaching the value for the TODGA 
system without SO3-Ph-BTBP for lower SO3-Ph-BTBP concentrations, as also observed 
with SO3-Ph-BTP.18  
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Figure 2. Extraction of Am(III), Cm(III), and Ln(III), influence of HNO3 concentration. 
Organic phase, 0.2 mol/L TODGA + 5% vol. 1-octanol in TPH. Aqueous phase, 241Am(III) 

+ 244Cm(III) + 152Eu(III) (2 kBq/mL each) + Ln(III) (10 mg/L each) + 20 mmol/L SO3-Ph-
BTBP (batch #1) in HNO3. A/O = 1, T = (293 ± 0.5) K. 

 

Figure 3. Extraction of Am(III), Cm(III), and Eu(III), influence of HNO3 concentration. 
Organic phase, 0.2 mol/L TODGA + 5% vol. 1-octanol in TPH. Aqueous phase, 241Am(III) 

+ 244Cm(III) + 152Eu(III) (2 kBq/mL each) + Ln(III) (10 mg/L each) + 20 mmol/L SO3-Ph-
BTBP (batch #2) in HNO3. A/O = 1, T = (293 ± 0.5) K. 
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Figure 4. Extraction of Am(III) and Eu(III), influence of SO3-Ph-BTBP concentration. 
Organic phase, 0.2 mol/L TODGA + 5% vol. 1-octanol in TPH. Aqueous phase, 241Am(III) 
+ 244Cm(III) + 152Eu(III) (2 kBq/mL each) + Ln(III) (10 mg/L each) + SO3-Ph-BTBP (batch 

#2) in 0.5 mol/L HNO3. A/O = 1, T = (293 ± 0.5) K. 

Complexation of Cm(III) and Eu(III) with SO3-Ph-BTBP — TRLFS study  

The complexation of Cm(III) and Eu(III) with SO3-Ph-BTBP in H2O (pH = 3, adjusted with 
HClO4) and in 0.5 mol/L HNO3 was studied by TRLFS: Increasing concentrations of SO3-
Ph-BTBP were added to solutions of 248Cm(ClO4)3 (initially 1·10−7 mol/L) or Eu(ClO4)3 
(initially 5·10−7 mol/L), and the emission spectra were recorded 15 min after each addition. 
The species distribution as a function of SO3-Ph-BTBP is determined, and stability 
constants are derived. For details, see.21  

Complexation of Cm(III) and Eu(III) with SO3-Ph-BTBP in H2O (pH = 3)  

The evolution of the Cm(III) emission spectra with increasing concentrations of SO3-Ph-
BTBP is shown in Figure 5. The Cm(III) aquo ion (emission band at 593.9 nm) is 
transformed into a new species 1 (emission band at 607.1 nm) and finally into a new 
species 2 (emission band at 619.0 nm). These are attributed to the Cm(III)-BTBP 1:1 and 
1:2 complexes,22 as confirmed by slope analysis (not shown). The respective Cm(III) 
species distribution is shown in Figure 6. The 1:2 complex is the dominating species for 
SO3-Ph-BTBP concentrations > 10−5 mol/L.  
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Figure 5. Normalised Cm(III) fluorescence spectra with increasing concentrations of SO3-
Ph-BTBP in H2O (pH = 3), [Cm(III)]ini = 1·10−7 mol/L, [SO3-Ph-BTBP] = 0 – 2.9·10−5 mol/L. 

 

Figure 6. Species distribution of Cm(III) with SO3-Ph-BTBP in H2O  
(pH = 3). Lines calculated with log β01 = 5.3 and log β02 = 10.4. 

The species distribution from the respective experiment with Eu(III) is shown in Figure 7. 
The Eu(III) 1:2 complex is the dominating species for SO3-Ph-BTBP concentrations 
> 3·10−4 mol/L.  
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Figure 7. Species distribution of Eu(III) with SO3-Ph-BTBP in H2O  
(pH = 3). Lines calculated with log β01 = 4.9 and log β02 = 8.4. 

Conditional stability constants for the Cm(III) and Eu(III) 1:1 and 1:2 complexes in H2O (pH 
= 3) are derived from the speciation data, see Table 1. The difference between the Cm(III) 
and Eu(III) log β02 values corresponds to a separation factor of 100. This is in good 
agreement with with e.g. CyMe4-BTBP’s selectivity for Cm(III) over Eu(III) determined in 
liquid-liquid extraction experiments.20  

Table 1. SO3-Ph-BTBP, conditional stability constants for the  
Cm(III) and Eu(III) 1:1 and 1:2 complexes in H2O (pH = 3). 

 Cm(III) Eu(III) ∆ 

log β01 5.3 4.9 0.4 

log β02 10.4 8.4 2 

Complexation of Cm(III) and Eu(III) with SO3-Ph-BTBP in 0.5 mol/L HNO3  

The selective back-extraction of Am(III) in a SO3-Ph-BTBP/TODGA Am-only extraction 
process would be performed at a HNO3 concentration of 0.5–0.8 mol/L, depending on the 
SO3-Ph-BTBP concentration (see above). Thus, the complexation of Cm(III) and Eu(III) 
with SO3-Ph-BTBP was studied in 0.5 mol/L HNO3.  

Other than is the case in H2O, direct formation of the Cm(III) or Eu(III) 1:2 complex species 
is observed in 0.5 mol/L HNO3; formation of the 1:1 complex species is suppressed. The 
Cm(III) species distribution is shown in Figure 8, the Eu(III) species distribution in Figure 9. 
With Cm(III), the 1:2 complex is the dominating species for SO3-Ph-BTBP concentrations 
> 2.5·10−4 mol/L. The Eu(III) 1:2 complex is the dominating species for SO3-Ph-BTBP 
concentrations > 2·10−3 mol/L. The stability constants of the 1:2 Cm(III) and Eu(III) 
complexes are given in Table 2.  

The conditional stability constant of the Cm(III) 1:2 complex is approx. two orders of 
magnitude higher than that of the Eu(III) 1:2 complex, as is the case in H2O (pH = 3). 
However, the absolute log β02 values in 0.5 mol/L HNO3 are approx. three orders of 
magnitude lower than the respective values in H2O (pH 3). This is explained by (a) the 
competition between protons and metal ions for SO3-Ph-BTBP and (b) the complexation of 
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the metal ions by nitrate anions. Further experiments and calculations to quantify these 
effects are under way.  

 

Figure 8. Species distribution of Cm(III) with SO3-Ph-BTBP  
in 0.5 mol/L HNO3. Lines calculated with log β02 = 7.25. 

 

Figure 9. Species distribution of Eu(III) with SO3-Ph-BTBP in 0.5 mol/L  
HNO3. Lines calculated with log β01 = 1.77 and log β02 = 5.35. 

Table 2. SO3-Ph-BTBP, conditional stability constants for  
the Cm(III) and Eu(III) 1:2 complexes in 0.5 mol/L HNO3. 

 Cm(III) Eu(III) ∆ 

log β02 7.25 5.35 1.9 

Biphasic vs.  monophasic experiments  

The monophasic complexation experiments clearly show that the final complexes formed 
with Cm(III) or Eu(III) and SO3-Ph-BTBP are 1:2 complexes. This is in agreement with 
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extraction and complexation studies performed with lipophilic BTBP extracting agents 
(see23 and references therein).  

The results from the biphasic extraction experiments seem to contradict; the slope for 
log DAm(III) vs. log [SO3-Ph-BTBP] is −1.3, see Figure 4. A similar discrepancy was 
observed with SO3-Ph-BTP18 (slope for log DAm(III) vs. log [SO3-Ph-BTP] being −1.9 with a 
slope of −3 expected based on the formation of 1:3 complexes21). So far we do not have a 
valid explanation for these findings. Further studies will address this issue.  

Tentative AmSel flow sheet   

A tentative AmSel flow sheet similar to the SO3-Ph-BTP i-SANEX process flow sheet3,6 is 
shown in Figure 10.  

1) “Extraction/scrubbing” section: TODGA (with 1-octanol as modifier) in kerosene is 
used to co-extract Am(III), Cm(III) + Ln(III). Masking agents are added to the feed to 
prevent co-extraction of Zr, Mo and Pd.24,25  

2) “Am(III) stripping” section: The loaded organic phase is contacted with SO3-Ph-
BTBP in HNO3 of appropriate concentration to selectively strip Am(III); partially co-
stripped Cm(III) + Ln(III) are re-extracted in the left part of the section.  

3) “Cm(III) + Ln(III) stripping” section: Cm(III) + Ln(III) are stripped from the organic 
phase using e.g. a glycolate solution.  

Due to the rather low Am(III)/Cm(III) selectivity (as compared to the An(III)/Ln(III) 
selectivity of the SO3-Ph-BTP i-SANEX system), significantly more stages are expected to 
be required in the “Am(III) stripping” section.  

 

Figure 10. Tentative AmSel flow sheet. 

Conclusions  

A new solvent extraction system for separating only Am(III) from HAR is introduced, based 
on reverse selectivity in the organic and in the aqueous phase. TODGA is used to co-
extract Am(III), Cm(III) and Ln(III); SO3-Ph-BTBP is used to selectively strip Am(III). 
Although the Am(III)/Cm(III) selectivity is low (SFCm(III)/Am(III) ≈ 2.5), sufficient selectivity is 
expected in a multi-stage process. The fact that HNO3 of suitable concentration is used to 
keep Cm(III) + Ln(III) in the organic phase during Am(III) stripping is advantageous; no 
auxiliary chemicals are required for this purpose. Work towards the demonstration of the 
AmSel process is being carried out in the SACSESS project.  
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