

KIT contribution to the UAM PHASE-I: modeling and updated results

L. Mercatali, V. Sanchez, J. Basualdo

KIT – Institute for Neutron Physics and Reactor Technology

UAM-8 Workshop, GRS (Germany), 14-16.05.2014

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Introduction

KIT-INR/RPD contribution to the UAM Neutronics Exercises:

- Monte Carlo (reference) solutions SERPENT 1.18 code

Computational methodologies

- > SERPENT code (version 1.1.18)
 - Different NDLs: JEFF3.1, JEFF3.1.1, ENDF/B-7
 - Statistics: 5.0e+06 neutrons sources over 1000 cycles
- > SCALE code (version 6.1)
 - ENDF/B-7
 - Transport (NEWT, XSDRNPM)
 - S/U analysis via perturbation theory: TSUNAMI

 $Q = f(\sigma_1, \sigma_2, ..., \sigma_n)$ Integral parameter

$$\frac{\delta Q}{Q} = \sum_{j} S_{j} \frac{\delta \sigma_{j}}{\sigma_{j}} \implies S_{j} = \frac{\partial Q}{\partial \sigma_{j}} \cdot \frac{\sigma_{j}}{Q} \quad \frac{\text{Sensitivity}}{\text{coefficient}}$$
$$D_{\sigma} = \begin{bmatrix} d_{11} & \cdots & d_{1J} \\ \vdots & \ddots & \vdots \\ d_{1J} & \cdots & d_{JJ} \end{bmatrix} \quad \underline{\text{Covariance matrix}}$$

Monte-Carlo (reference) solutions: results

Test cases I-1		Kinf			
		JEFF3.1	JEFF 3.1.1	ENDFB-7	
VVER	HZP	1.34764 ± 0.00028	1.34937 ± 0.00026	1.34986 ± 0.00027	
	HFP	1.33152 ± 0.00028	1.33356 ± 0.00029	1.33435 ± 0.00029	
DWD	HZP	1.42785 ± 0.00027	1.42888 ± 0.00025	1.42923 ± 0.00027	
PWR	HFP	1.41136 ± 0.00026	1.41315 ± 0.00028	1.41401 ± 0.00026	
BWR	HZP	1.34541 ± 0.00027	1.34673 ± 0.00025	1.34691 ± 0.00026	
	HFP	1.23046 ± 0.00032	1.23080 ± 0.00032	1.23295 ± 0.00032	
KRITZ-2:1	Cold	1.23762 ± 0.00028	1.23846 ± 0.00027	1.23984 ± 0.00027	
	Hot	1.22632 ± 0.00028	1.22864 ± 0.00026	1.22863 ± 0.00027	
GEN-III	HFP	1.01485 ± 0.00039	1.01602 ± 0.00039	1.01805 ± 0.00037	
Test cases I-2		Kinf			
		JEFF3.1	JEFF 3.1.1	ENDFB-7	
DWD	HZP	1.41569 ± 0.00019	1.41733 ± 0.00019	1.41839 ± 0.00019	
Γ VV K	HFP	1.40616 ± 0.00020	1.40765 ± 0.00019	1.40852 ± 0.00018	
BWR	HZP	1.11771 ± 0.00025	1.11830 ± 0.00025	1.11913 ± 0.00025	
	HFP	1.07503 ± 0.00028	1.07663 ± 0.00029	1.07739 ± 0.00027	
GEN-III type 1 (UOX 2.1%)		1.04854 ± 0.00022	1.05043 ± 0.00021	1.05159 ± 0.00022	
GEN-III type 1 (UOX 4.2%)		1.25708 ± 0.00019	1.25951 ± 0.00019	1.25997 ± 0.00020	
GEN-III type 2		1.12760 ± 0.00027	1.12937 ± 0.00026	1.13048 ± 0.00026	
GEN-III type 3		1.05005 ± 0.00030	1.05148 ± 0.00029	1.13048 ± 0.00026	
GEN-III type 4		1.11595 ± 0.00025	1.11706 ± 0.00025	1.11697 ± 0.00025	

Good agreement within different data libraires and with previous MCNP (PSU) results

Computational method: TSUNAMI-1d flow diagram

Exercises I-1: Cell Physics

Focuses on the derivation of the multi-group microscopic cross section libraries (in the way used as inputs by the lattice physics codes) and their uncertainties

Test cases:

- PB-2 (BWR)
- TMI1 (PWR)
- GEN-III (MOX fuel)
- KRITZ 21, KRITZ 213, KRITZ 219
- VVER (KOZLODUY-6)

Exercise I-1: k-inf

SCALE vs. SERPENT

Micro-XS	SCALE 6.1 [barns]	SERPENT [barns]	Uncertainty (%)	Unit cell	
U-235 abs.	41.48	40.41 ± 0.0086	1.22		
U-238 abs.	0.88	0.80 ± 0.0011	0.97		
U-235 fission	33.43	32.56 ± 0.00069	1.22	DVVK	
U-238 fission	0.086	0.089 ± 0.00097	4.79		
U-235 abs.	42.95	42.18 ± 0.00088	1.09		
U-238 abs.	0.96	0.93 ± 0.0011	0.97		
U-235 fission	34.72	34.10 ± 0.00064	1.11	IVVIX	
U-238 fission	0.099	0.10 ± 0.00096	3.94		
U-235 abs.	58.13	57.26 ± 0.00085	1.03		
U-238 abs.	1.042	1.005 ± 0.0012	0.99		
U-235 fission	47.84	47.76 ± 0.00063	1.05	VVLIX	
U-238 fission	0.093	0.095 ± 0.00100	3.88		

Exercises I-2: Lattice Physics

Multigroup cross-section uncertainties from Exercise I-1 are propagated through lattice physics calculations to 2 groups (Ecutoff = 0.625 eV) microscopic uncertainties

Type 1: UOX 2.1% ^{233}U without UO2-Gd2O3 rods UOX 4.2% ^{235}U assembly without UO2-Gd2O3 rods

Type 3: UOX 3.2% ^{245}U assembly with 20 UO2-Gd2O3 (1.9% $^{235}\text{U})$ rods

Type 2: UOX 4.2% ^{235}U assembly with 12 UO2 Gd2O3 (2.2% $^{235}\text{U})$ rods

<u>GEN-III</u>

Type 4: MOX assembly (without UO2-Gd2O3 rods)

Exercises I-2: results

Test Cas	e	k-eff	Uncertainty
D\A/D	HZP	1.11029	5.00E-01
DVVK	HFP	1.07736	5.56E-01
	HZP	1.41009	4.64E-01
FVVK	HFP	1.39351	4.71E-01
GEN-III (1)	HFP	1.25325	4.87E-01
GEN-III (2)	HFP	1.12304	4.94E-01
GEN-III (3)	HFP	1.04501	5.03E-01
GEN-III (4)	HFP	1.07008	9.68E-01

Keff Sensitivities		Keff Uncertainties			
XS	BWR	PWR	XS	BWR	PWR
U-235 nubar	9.19E-1	9.45E-1	U-238 (n,ɣ)	3.20E-1	2.56E-1
U-235 fission	4.15E-1	2.73E-1	U-235 nubar	2.65E-1	2.68E-1
U-235 total	3.08E-1	1.25E-1	U-238 (n,n')	2.06E-1	9.72E-2
H-1 elastic	1.66E-1	1.66E-1	U-235 chi	1.47E-1	8.79E-2
H-1 scatter	1.65E-1	1.66E-1	U-235 (n,ɣ)	1.44E-1	2.00E-1

10 Luigi Mercatali – UAM-8 Workshop, GRS (Germany) 14-16.05.2014

Exercises I-2: Homogenized XS Uncertainties

Summary

- The complete set of updated results for Exercises I-1 and I-2 has been provided to the benchmark team according to the new template specifications
- Uncertainties in the order of ~0.5% (keff) and ~4% (XSs)
- U-238 (n,y) and Pu-239 nubar major contributors to the uncertainties for UOX and MOX LWR's test cases
- Good agreement with the Monte-Carlo solutions, especially for microscopic XSs
- Work in progress:
 - Validation of the capabilities of the statistical sampling methodology implemented in SCALE 6.1.2
 - Exercise I-3 test cases
 - Pin-cell burn-up test case I-1

