

Sensitivity analysis using the URANIE platform with subchannel codes

J. Jiménez, N. Trost, V. Sánchez

Index of content

- The URANIE software
- Application to the O2 -1999 FW transient
 - Sensitivity analysis using COBRA-TF
- Summary

URANIE

- URANIE is a software dedicated to uncertainty and optimization.
- It allows to perform studies on uncertainty propagation, sensitivity analysis or model calibration in an integrated environment.
- It is based on ROOT, a software developed at CERN for particle physics data analysis.
- URANIE benefits from the numerous features of ROOT, among which:
 - a C++ interpreter (CINT)
 - a Python interface (PyROOT)
 - access to SQL databases
 - many advanced data visualization features

Application to the O2 -1999 FW transient

Power oscillation during the event (feedwater transient)

Oskarshamn-2 February 25, 1999 feedwater transient

- Boundary conditions taken from TRACE/PARCS calculation (KIT model with 444 channels)
- Modeling the O2 core with COBRA-TF using 444 channels

O2 Modeling with subchannel codes

- Oskarshamn-2 Core has being modeled with COBRA-TF, SUBCHANFLOW and FLICA4
- Code versus measured data comparison

Parameter at HFP	Benchmark	SCF	FLICA4	CTF
Thermal Power (MW)	1798.6	1798.6	1798.6	1798.6
Core inlet Temperature (K)	547.30	547.30	547.30	547.30
Core Inlet Mass Flow (kg/s)	4793.50	4793.50	4793.50	4793.50
Core outlet Temperature (K)	558.48	559.63	558.2	559.25
Average void fraction (-)	0.42	0.41	0.39	0.37
Void fraction at core outlet (-)	-	0.7124	0.6698	0.7080
Presure drop in the core (kPa)	46.0	45.1	40.1	53.52
Average flow velocity in the core (m/s)		2.99	4.59 (Vap.) 2.77 (Liq.)	3.21

Results: Pressure drop

 3D Power distribution take from converge steady state TRACE/PARCS

⁷ OECD/NEA Oskarshamn-2 Third Workshop, GRS, April 12-13, 2014

Results: Void fraction in channel 5

- Very different onset of boiling
- Effects of subcooled boiling are modeled differently

The position of the spacers grids in FLICA and COBRA-TF can be seen clearly

Sensitivity study

- Sensitivity analysis with parameters taken from the PhD I. Gajev
 - Power range was increased from $\pm 0.75\%$ to $\pm 2.0\%$

No.	Parameter	Range	Distribution
1	Outlet pressure	± 0.5 %	Uniform
2	Mass flow rate	± 0.5 %	Uniform
3	Inlet temperature	± 2.0 %	Normal
4	Power	± 2.0 %	Normal
5	Cladding Wall Roughness	± 30.0 %	Normal
6	Spacer grid pressure drop coefficient	± 5.0 %	Uniform
7	Gap Conductance	± 35.0 %	Uniform
8	Fuel Conductivity	± 10.0 %	Uniform
9	Cladding Conductivity	± 6.25 %	Uniform

¹⁰ OECD/NEA Oskarshamn-2 Third Workshop, GRS, April 12-13, 2014

COBRA-TF O2 nominal steady state results

- Axial pressure drop and Outlet void fraction are the output parameters studied (500 runs were used).
- The computed sensitivity coefficients by URANIE corresponding to a steady state at nominal operating conditions using COBRA-TF.

	Mass flow rate	Inlet enthalpy	Pressure	Heat flux	Spacer	Gap conductivity
Axial pressure loss	0.259488	0.384382	-0.52228	0.410298	0.597949	-0.0036
Void Fraction	-0.198526	0.673415	-0.660979	0.275753	-0.0077247	0.02582

Pressure drop distribution over all COBRA-TF runs

Transient Boundary Conditions applied

The next boundary conditions were introduced into CTF for the simulation of the oscillations (only 12s are analyzed).

• Power, inlet temperature, pressure, mass flow rate.

Transient Boundary Conditions applied

Those BC are representative of a stability event.

Sensitivity coefficients of the void fraction

¹⁵ OECD/NEA Oskarshamn-2 Third Workshop, GRS, April 12-13, 2014

Sensitivity coefficients of the axial pressure drop

¹⁶ OECD/NEA Oskarshamn-2 Third Workshop, GRS, April 12-13, 2014

Mean, min and max value of the void fraction at three different elevations: 1/3, 2/3 and exit

Mean, min and max value of the axial pressure loss of the bundle average

Conclusions and Outlook

- Investigations on the use of URANIE platform for sensitivity analyses have been conducted within the framework of the NURESAFE FP7 EU project.
- COBRA-TF model for O2 core was developed
 - Good agreement between O2 reference values and predictions,
 - FLICA4 and SUBCHANFLOW models developed too.
- Studies using the COBRA-TF code on steady state and transient simulations were carried out.
- Satisfactory results, high degree of flexibility in the URANIE scripts.
- Further validation of the inputs is still needed (FLICA4 v1.11.13).
- The developed inputs could be applied in Phase 3, exercise 2 and 3 of the O2 benchmark.

Thanks for your attention

