

KIT activities using CTF within NURESAFE project

J. Jimenez, N. Trost, V. Sanchez

Presented by J. Jimenez

javier.jimenez@kit.edu

- Remarks about NURESAFE CTF version
- D13.22: Description of the CTF input deck for BWR ATWS analysis (KIT & GRS)
- D14.22b: Full core CTF input model for VVER MSLB analysis (KIT & INRNE)
- D11 22: Report on COBRA-TF UQ results for BWR ATWS analysis (KIT & CEA)
- Conclusion & Outlook

- Within NURESAFE, COBRA-TF is being delivered by GRS to the partners
- Code license agreement need to be signed between PSU and each interested partner
- The same source as for the CASL program
- Email communication with ORNL, GRS and PSU to solve bugs and problems

1. COBRA-TF input deck for BWR ATWS

 D13.22: Description of the CTF input deck for BWR ATWS analysis (KIT & GRS)

- 444 channels: Every channel represents a FA
- There are 4 types of different fuel assemblies

- The current model has the following limitations:
 - The bypass channel and the internal bundle water channel are not explicitly modelled.
 - Only the active part of the core is modelled. For the coupling with a neutronic core model, a bottom and top reflector part will be needed.
 - The axial power distribution is the same in all assemblies.
 - The 444 fuel assemblies are modelled in parallel (no flow between channels).
 - The flow area, wetted perimeter and pressure loss coefficients are taken from the specifications.
- The input deck has around 3900 lines

- MAIN PROBLEM CONTROL DATA
 - CARD GROUP 1: Selection of the Physical Models, Global Boundary Conditions, and Initial Conditions
 - CARD GROUP 2: Channel Description
 - CARD GROUP 3: Transverse Channel Connection Data (Gap definition)
 - CARD GROUP 4: Vertical Channel Connection Data
 - CARD GROUP 7: Local Pressure Loss Coefficient and Grid Spacer Data
 - CARD GROUP 8: Rod and Unheated Conductor Data

- MAIN PROBLEM CONTROL DATA
 - CARD GROUP 9: Conductor Geometry Description
 - CARD GROUP 10: Material Properties Tables
 - CARD GROUP 11: Axial Power Distribution Tables, Radial Power Distribution, and Transient Forcing Functions
 - CARD GROUP 12: Turbulent Mixing and Void Drift Data
 - CARD GROUP 13: Boundary Condition Data
 - CARD GROUP 14: Output Options
 - CARD GROUP 15: Time Domain Data

- The input deck developed is in SI units
- The solver choice for the system pressure matrix is Bi-CGSTAB
- Global boundary conditions taken from the specifications
- Regarding the mixing:
 - Single-phase mixing coefficient according to Rogers and Rosehart (1972)
 - Two-phase multiplier according to Beus (1970)
- The flow area and wetted parameter for each channel are provided. The data are taken directly from the distributed data
- There is no CARD GROUP 3, BWR fuel bundles are wrapped

- Only one section was specified for the whole axial length of the active core (3.712 m)
- 50 equidistant axial nodes are used
- Only the active part of the core is modelled
- Fuel bundle type 4 contains partial fuel rods. Card group 5 and 6 allow for the modification of the flow area in selected channels (bundle type 4)

- Local Pressure Loss Coefficient and Grid Spacer Data
 - The data is taken directly from the distributed data
- There are 444 nuclear fuel rods representing each FA (nucl component CARD 9)
 - For the fuel rod modeling, a constant gap conductance of 9500 W/cm² is assumed
- There are 444 unheated structures representing the canister walls (*wall* component CARD 9)
- In CARD 10, default material properties for UO2 fuel and Zircalloy are used

- The radial power distribution is taken from a steady-state coupled calculation performed with TRACE/PARCS
- The axial power distribution is the core averaged axial power distribution extracted from the same coupled calculation and thus is the same in all assemblies
- Turbulent mixing and void drift data is specified in this input card.
 - single-phase mixing coefficient is taken according to Rogers and Rosehart
 - two-phase multiplier is taken according to Beus
 - A value for THETM of 5.0 is suggested according to Sato (1992) for the ratio between maximum two-phase turbulent mixing coefficient (near the transition between slug and annular flow) and single-phase turbulent mixing coefficient (in single phase liquid)
- In total there are 888 (444*2) boundary conditions specified

1.9 General model assumptions

Model option	Where	Choice
Rod friction factor correlation (IRFC)	CARD GROUP 1	2 (λ = 0.204 Re ^{-0.2})
Entrainment and deposition model (EDMOD)	CARD GROUP 1	0
Mixing and void drift model (IMIX)	CARD GROUP 1	2
Iterative Solver for pressure equation (ISOL)	CARD GROUP 1	3 (Bi-CGSTAB)
Number of simultaneous solution groups (NSIM)	CARD GROUP 4	1
Rebalancing option for iterative control (IREBAL)	CARD GROUP 4	0
Conduction in solid structures (NC)	CARD GROUP 8	1 (radial only)
Flag for steady state calculation of rod temp. (NSTATE)	CARD GROUP 8	2
Renoding flag for heat transfer solution for rod N (NRENODE)	CARD GROUP 8	0
Fuel relocation flag (IRELF)	CARD GROUP 9	0
Fuel degradation flag (ICONF)	CARD GROUP 9	0
Flag for metal-water reaction, ZrO ₂ only (IMWR)	CARD GROUP 9	0

 CTF converge to steady state without major problems in a 3 seconds void transient

Core pressure versus height

Radial average void fraction versus height

 Good agreement between O2 reference values and predictions although bypass flow is not modeled.

- Oskarshamn-2 Core has being modeled with COBRA-TF, SUBCHANFLOW and FLICA4
- Code versus measured data comparison

Parameter at HFP	Benchmark	SCF	FLICA4	CTF
Thermal Power (MW)				
Core inlet Temperature (K)				
Core Inlet Mass Flow (kg/s)				
Core outlet Temperature (K)	NON-DISCLOSURE AGREEMENT			
Average void fraction (-)				
Void fraction at core outlet (-)				
Presure drop in the core (kPa)				
Average flow velocity in the core (m/s)				

^{1&}lt;sup>st</sup> CTF User group Meeting, May 12-13, 2014, GRS, Germany

1.12 Results: Pressure drop

3D Power distribution take from converge steady state TRACE/PARCS

	Benchmark	SUBCHANFLOW	FLICA4	CTF
Average Pressure drop in the core (kPa)	Ref.	-1.9%	-12.8%	+16.3%

NURESAFE

- Very different onset of boiling
- Effects of subcooled boiling are modeled differently

NURESAFE

- Similar vapor volume fraction at the core outlet
- The position of the spacers grids in FLICA and COBRA-TF can be seen clearly

Post-processing of 3D output within SALOME (MED)

2. VVER-1000 COBRA-TF input model

- D14.22b Released: Full core CTF input model for VVER MSLB analysis (KIT & INRNE)
 - CTF input deck
 - SUBCHANFLOW input deck
 - Comparison of results at HZP and HFP

Community Research	O P E A N MISSION
	NUclear REactor SAFEty Simulation Platform Collaborative Project (Large – scale Integrating Project) Seventh Framework Programme EURATOM Contract Number: 323263 Start date: 01/01/2013 Duration: 36 Months
D14.2	22b - Full core CTF input model for VVER MSLB analysis
	Authors: J. Jimenez, V. Sanchez (KIT)
NURESAFE - D14.22b - vers	ion 1 – Issued on 24/06/2013

 163 channels: Every channel represents a FA composed by 312 fuel pins, 18 guide tubes and 1 instrumentation rod resulting in a total of 331 rods

NURESAFE

Basic geometrical dimensions	Value
Fuel rod external diameter, m	0.0091
Guide tube diameter, m	0.0126
Instrumentation rod diameter, m	0.0112
Clad wall thickness, m	0.00069
Fuel pellet outer diameter, m	0.00756
Fuel pellet inner diameter, m	0.00235
Fuel assembly pitch, m	0.236

- MAIN PROBLEM CONTROL DATA
 - CARD GROUP 1: Selection of the Physical Models, Global Boundary Conditions, and Initial Conditions
 - CARD GROUP 2: Channel Description
 - CARD GROUP 3: Transverse Channel Connection Data (Gap definition)
 - CARD GROUP 4: Vertical Channel Connection Data
 - CARD GROUP 7: Local Pressure Loss Coefficient and Grid Spacer Data
 - CARD GROUP 8: Rod and Unheated Conductor Data

- MAIN PROBLEM CONTROL DATA
 - CARD GROUP 9: Conductor Geometry Description
 - CARD GROUP 10: Material Properties Tables
 - CARD GROUP 11: Axial Power Distribution Tables, Radial Power Distribution, and Transient Forcing Functions
 - CARD GROUP 12: Turbulent Mixing and Void Drift Data
 - CARD GROUP 13: Boundary Condition Data
 - CARD GROUP 14: Output Options
 - CARD GROUP 15: Time Domain Data

Global boundary conditions:

Global boundary conditions	Value
Total inlet mass flow rater, kg/s	17217.31
Average linear heat rate per rod, kW/m	16.6169
Initial pressure in the fluid domain, bar	158.4
Initial enthalpy in the fluid domain, kJ/kg	1273.64
Enthalpy of non-condensable gas mixture, kJ/kg	288.39

Channel area =
$$\frac{\sqrt{3}}{2}$$
 pitch² - $\left(312\frac{\pi D_{rod}^2}{4} + 18\frac{\pi D_{guide \ tube}^2}{4} + \frac{\pi D_{instr.\ rod}^2}{4}\right) = 0.025599 \text{ m}^2$

Wetted Perimeter = $312\pi D_{rod} + 18\pi D_{guide \ tube} + \pi D_{instr.rod} = 9.667310 \text{ m}$

Nominal gap width = $\frac{pitch}{\sqrt{3}}$ = 0.13625 m Nominal gap lenght = pitch = 0.236 m

- 444 gap connectivities between channels
- 30 equidistant axial layers were chosen (3.55 m)

 $DXS = \frac{\text{total length}}{\text{number of axial nodes}} = \frac{3.55}{30} = 0.11833 \text{ m}$

Local Pressure Loss Coefficient and Grid Spacer Data

- No values provided in the spefications for the spacer grid pressure loss coeff.
- They are modeled now with 0.0 coefficient waiting for a better value.

2.6 CARD GROUP 10

Material properties taken from given correlations

$$\lambda_{UO2}(T) = 10.1139 - A_1T + A_2T^2 - A_3T^3 + A_4T^4 - A_5T^5 \frac{W}{m \cdot K}$$

NURESAFE

$$c_{P,UO2}(T) = C_1 + C_2 T - C_3 T^2 + C_4 T^3 - C_5 T^4 + C_6 T^5 \frac{J}{kg \cdot K}$$

 $A_1 = 0.01783$ $A_2 = 1.98486.10^{-5}$ $A_3 = 1.23717.10^{-8}$ $A_4 = 3.93580.10^{-12}$ $A_5 = 4.78491.10^{-16}$

 $C_1 = 229.61$ $C_2 = 0.28346$ $C_3 = 4.0.10^{-4}$ $C_4 = 3.17462.10^{-7}$ $C_5 = 1.34368.10^{-10}$ $C_6 = 2.6214.10^{-14}$

2.7 General model assumptions

Model option	Where	Choice
Rod friction factor correlation (IRFC)	CARD GROUP 1	2 (λ = 0.204 Re ^{-0.2})
Entrainment and deposition model (EDMOD)	CARD GROUP 1	0
Mixing and void drift model (IMIX)	CARD GROUP 1	2
Iterative Solver for pressure equation (ISOL)	CARD GROUP 1	3 (Bi-CGSTAB)
Number of simultaneous solution groups (NSIM)	CARD GROUP 4	1
Rebalancing option for iterative control (IREBAL)	CARD GROUP 4	0
Conduction in solid structures (NC)	CARD GROUP 8	1 (radial only)
Flag for steady state calculation of rod temp. (NSTATE)	CARD GROUP 8	2
Renoding flag for heat transfer solution for rod N (NRENODE)	CARD GROUP 8	0
Fuel relocation flag (IRELF)	CARD GROUP 9	0
Fuel degradation flag (ICONF)	CARD GROUP 9	0
Flag for metal-water reaction, ZrO ₂ only (IMWR)	CARD GROUP 9	0

NURESAFE 2.10 VVER Core Model Benchmarking for MSLB Analysis

- Representative boundary conditions of realistic HZP and HFP
- Assumption of flat radial and axial power profiles.

Inlet boundary conditions	HZP	HFP
Thermal power (W)	0.3* 10 ⁶	3000 *10 ⁶
Inlet coolant temperature (C)	279.0	287.7
Inlet Outlet pressure (bar)	158.4	158.4
Inlet Enthalpy (kJ/kg)	1227.4	1272.0

 Comparison of pure TH results between CTF and SUBCHANFLOW

2.11 Analysis of HZP results

Results at HZP	CTF	SUBCHANFLOW
Total axial height pressure loss (bar) (geodetic +frictional + single head losses)	0.82455	0.82882 (+0.51%)
Total no gravity pressure loss (bar) (frictional and single head losses)	0.55721	0.56195 (+0.84%)
Inlet Reynolds number	464526	450410 (-3.13%)

Very good agreement in the all the parameters

2.12 Analysis of HFP results

Results at HFP	CTF	SCF
Fotal axial height pressure loss (bar) geodetic +frictional + single head losses)	0.85486	0.83844 (-1.96%)
Fotal no gravity pressure loss (bar) frictional and single head losses)	0.58219	0.58871 (+1.11%)
nlet Reynolds number	481170	467240 (-2.98%)

Very good agreement in the all the parameters

Post-processing of SCF results within SALOME

3. COBRA-TF URANIE scripts

- The same scripts can be used for:
 - Steady state
 - Transient analyses
- Dedicated general script for postprocessing.
- Around 500 lines of URANIE code.
- Documentation reported under D11.22 deliverable (WP1.1).

(KIT & CEA)

EUROPEAN COMMISSION Community Research	
NURESAFE NUclear REactor SAFEty Simulation Platform	
Collaborative Project (Large – scale Integrating Project) Seventh Framework Programme EURATOM	
Contract Number: 323263 Start date: 01/01/2013 Duration: 36 Months	
NURESAFE	
D11.22 - Report on COBRA-TF UQ results for BWR ATWS analysis	
Authors: J. Jimenez, N. Trost, L. Mercatali, V. Sanchez (KIT)	
NURESAFE – D11.22 – version 1 – Issued on 1/4/2014	_

- URANIE is a software dedicated to uncertainty and optimization.
- It allows to perform studies on uncertainty propagation, sensitivity analysis or model calibration in an integrated environment.
- Based on ROOT, a software developed at CERN for particle physics data analysis. As a result, URANIE benefits from the numerous features of ROOT, among which:
 - a C++ interpreter (CINT)
 - a Python interface (PyROOT)
 - access to SQL databases
 - many advanced data visualization features
- URANIE training course attended 2-4th April 2013 in Saclay.

NURESAFE 3.2 URANIE Software Functional Diagram

3.3 Script for COBRA-TF run

	Give URANIE the strings of COBRA-TF input to be changed
<pre> tds->getAttribute("pref")->setFileFlag(sFileName, "@P tds->getAttribute("massf")->setFileFlag(sFileName, "@ tds->getAttribute("hin")->setFileFlag(sFileName, "@Hi tds->getAttribute("aflux")->setFileFlag(sFileName, "@</pre>	ref@"); Massf@"); n@"); Aflux@");
<pre>TSampling *sampling = new TSampling(tds, "lhs", nS); sampling->generateSample();</pre>	Generate the random data
TOutputFileKey *fout = new TOutputFileKey("result_cha TAttribute *avgpres = new TAttribute("total_ax_pres_1 avgpres->setDefaultValue(-200.0);	onels.out");Specify the output file to extract the data for post-processing
<pre>fout->addAttribute(avgpres); TCode *mycode = new TCode(tds, "COBRA-TF"); mycode->addOutputFile(fout); TLauncher *tlch = new TLauncher(tds, mycode);</pre>	Tell URANIE which value has to be extracted from CTF output and initialize it with a non-physical value for easier error detection
<pre>tlch->setSave(); tlch->setClean(); tlch->setWorkingDirectory(gSystem->Getenv("PWD") + TS tlch->setVarDraw("MassFlowRate:total_ax_pres_loss_ura</pre>	<pre>tring("/tmpUranie/cobratf")); nie","","");</pre>
•••	Initiate a COBRA-TF simulation run


```
TCanvas *Canvas = new TCanvas("c1", "Graph",5,64,1270,667);
 c1->Divide(2, 2);
 c1->cd(1);
 tlch->run();
 c1->cd(3);
                                                                           Visualize the output
 tds->draw("OutletPressure:total ax pres loss uranie");
                                                                           of URANIE
 c1->cd(2);
 tds->draw("InletTemperature:total ax pres loss uranie","","");
  c1->cd(4);
 tds->draw("Power:total_ax_pres_loss_uranie","","");
  TCanvas *Canvas2 = new TCanvas("c2", "Graph", 5, 64, 1270, 667);
                                                                          Plot a histogram of
  tds->draw("total ax pres loss uranie");
                                                                          the output data
 tds->exportData("BFBT_P6x_Sampling.dat");
}
                              Export the output as well
                              as the sampled random
                              numbers into a file for post-
                              processing.
```


3.6 Script for COBRA-TF statistics

Power oscillation during the event (feedwater transient)

Oskarshamn-2 February 25, 1999 feedwater transient

- Boundary conditions taken from TRACE/PARCS calculation (KIT model with 444 channels)
- Modeling the O2 core with COBRA-TF using 444 channels (WP1.3)

 Sensitivity analysis with parameters taken from the NURESAFE benchmark specifications (D13.11)

No.	Parameter	Range	Distribution
1	Outlet pressure	± 0.5 %	Uniform
2	Mass flow rate	± 0.5 %	Uniform
3	Inlet temperature	± 2.0 %	Normal
4	Power	± 2.0 %	Normal
5	Cladding Wall Roughness	± 30.0 %	Normal
6	Spacer grid pressure drop coefficient	± 5.0 %	Uniform
7	Gap Conductance	± 35.0 %	Uniform
8	Fuel Conductivity	± 10.0 %	Uniform
9	Cladding Conductivity	± 6.25 %	Uniform

- Axial pressure drop and Outlet void fraction are the output parameters studied (500 runs were used).
- The computed sensitivity coefficients by URANIE corresponding to a steady state at nominal operating conditions using COBRA-TF.

	Mass flow rate	Inlet enthalpy	Pressure	Heat flux	Spacer	Gap conductivity
Axial pressure loss	0.259488	0.384382	-0.52228	0.410298	0.597949	-0.0036
Void Fraction	-0.198526	0.673415	-0.660979	0.275753	-0.0077247	0.02582

Axial pressure drop for different spacer coefficient and gap boundary conditions

Pressure drop distribution over all COBRA-TF runs

NURESAFE 3.11 Transient Boundary Conditions applied

- The next boundary conditions were introduced into CTF for the simulation of the oscillations (only 12s are analyzed).
- They have been extracted from a TRACE5p3/PARCS results

1st CTF User group Meeting, May 12-13, 2014, GRS, Germany

NURESAFE 3.12 Transient Boundary Conditions applied

Those BC are representative of a stability event.

3.13 Results in the zooming area

Sensitivity coefficients of the void fraction

Sensitivity coefficients of the axial pressure drop

Mean, min and max value of the void fraction at three different elevations: 1/3, 2/3 and exit

3.16 Results in the zooming area

 Mean, min and max value of the axial pressure loss of the bundle average

1st CTF User group Meeting, May 12-13, 2014, GRS, Germany

NURESAFE

- COBRA-TF model for O2 core completed
 - Good agreement between O2 reference values and predictions,
 - FLICA4 and SUBCHANFLOW models developed as a backup solution for O2
- During the first 18 months of the project, investigations on the use of URANIE platform for sensitivity analyses have been conducted.
- Studies using the COBRA-TF code on steady state and transient simulations were carried out.
- Satisfactory results, high degree of flexibility in the URANIE scripts.
- The scripts can be extrapolated to any code with input text files: FLICA4, DYN3D, COBAYA3, ATHLET, etc, ...

^{1&}lt;sup>st</sup> CTF User group Meeting, May 12-13, 2014, GRS, Germany

- The first version of a full-core CTF input model for VVER-1000 MSLB analysis has been developed and tested standalone.
- In overall, standalone CTF vs. SUBCHANFLOW results show a very good agreement.
- Main differences come from the use of different steam water properties tables (See inlet Re number). The models are very similar for single phase flow.

FUTURE WORK

 Application to coupled simulations is foreseen in the next months.

THANKS FOR YOUR ATTENTION

- Description of the KIT code SUBCHANFLOW
- Single and two phase (mixture) subchannel code for water, sodium, lead and gas cooled reactors
- Mass, momentum, enthalpy (3)-equation solver for strictly upward flow
- ✓ Fast running implicit fix-point iteration solver with axial plane wise matrix solution
- ✓ Hexagonal and square bundle geometry
- ✓ Stationary and transient solutions
- ✓ Applicable to LWR & Innovative reactors (SFR)
- ✓ Capability for coupling with a system code

Sub-channel analysis of SUBCHANFLOW

SUBCHANFLOW Features

