

"Fortschritte in der Fusionsforschung -ITER, Wendelstein und Wege zu einem Fusionskraftwerk"

Robert Stieglitz & Klaus Hesch

KIT – University of the State of Baden-Württemberg and National Research Center in the Helmholtz Association

www.kit.edu

Inhalt

- "Was ist Fusion ?"
- Wege zum Fusionskraftwerk- Europa
- Herausforderungen- Technologiefortschritte
- Aktuelle Projekte Wendelstein/ITER
- "Ausblick"

Ein Beispiel: Zwei Wassertropfen

Reduktion der Oberfläche führt zu einem Energiegewinn

Y RADIATIO.

WAS IST FUSION ?

2014 5

Was ist Fusion?

Umwandlung von Masse in Energie $E=m c^2$

- Massensumme:
- Beispiel:

Nukleonen (p+n) > Zielelement

 $2.01 + 3.02 \rightarrow 4.0 + 1.01 + 17.6 MeV$

Weiteres Beispiel:

Umwandlung 1g Wasser in Energie:

$$E = m c^{2} = 10^{-3} kg \cdot \left(3 \cdot 10^{8} \frac{m}{s}\right)^{2} = 9 \cdot 10^{13} J$$

Sprengkraft von 10.000t TNT !!

ENORME ENERGIEINHALTE

Bindungsenergie E pro Nukleon als Funktion der Massenzahl A

Mögliche Kernreaktionen: SONNE **+** ERDE

 $^{2}D + ^{3}T \rightarrow ^{4}He + n + 17,6 \text{ MeV}$ -aus Spaltungsreaktion $^{6}Li + n \rightarrow {}^{3}T + {}^{4}He$

Wie muss man sich die Reaktion vorstellen ?

Was ist Fusion ? Gibt es genügend Brennstoff ?

elektr. Jahresenergieverbrauch vierköpfiger Familie passt in Rucksack !

75 mg Deuterium 225 mg Lithium

zu finden in:

2 Litern Wasser und 250 g Gestein

Energiegehalt:

48 000 Millionen Joule entsprechend 1 000 Litern Öl

Für ein Kraftwerk (1000MW_e=2.700MW_{th}) benötigt man:

- Pro Tag ca. 410g Tritium (³T) und 270g Deuterium (²D)
- Pro Jahr ca. 150kg Tritium (³T) und ~100g Deuterium (²D)
- entspricht Gewicht von 5 Säcken Zement !!!!!!

Was ist ein Plasma ? Plasma- "Feuer der Fusion"

Betrachtung: Plasma = "Aggregatszustand"

Was passiert im Plasma ?

- Zerfall neutraler Atome in Ionen und Elektronen.
- therm. Energie \approx Größenordnung der Ionisationsenergie (13.6eV bei H₂).
- Transition Gas
 Plasma kontinuierlicher Prozess (kein Phasenübergang).

Was ist ein Plasma?

Beispiel: Atombewegung des Wasserstoffs bei $T < 10^{5\circ}$ C \Rightarrow KEIN PLASMA

Karlsruher Institut für Technologie

Was ist ein Plasma?

Beispiel : Atombewegung des Wasserstoffs bei *T*>10⁵°C **⇒**PLASMA

Wie schließe ich Plasma ein ? – techn. Optionen

Trägheitseinschluss

Kompression kleiner D-T-Kugeln (TARGET)

durch schnellen Energieeintrag.

 kleine Thermonuklearexplosionen (Mini-H-Bombe).
 (diskontinuierlich)

Was bewirkt der Magnetfeldeinschluss ?

- Elektronen, Ionen fliegen entlang Feldlinie
- unendliche therm.& elektr. Leitfähigkeit ||B
- Elektronen & Ionen rotieren auf unterschiedlichen Kreisbahnen
- Heizung mit der Eigenfrequenz möglich (ICRH, ECRH, LHH)
- Aber unterschiedliches Stoßverhalten ⊥ B
- Gradienten des Magnetfeldes f
 ühren zu Ladungstrennung
- Plasmainstabilität (Verdrillung von B erforderlich => zusätzliche regelbare Spulen)
- PLASMA berührungslos in einem Torus (Donught) einschließbar !!!

Plasmapyhsik- magnet. Einschluss

PViessiehine/Metalessisteiau7sX?

Stabiler Einschluss in H-mode

© Zohm,IPP

Plasmapyhsik- magnet. Einschluss

Kann man das rechnen? Ziel Voraussage für einen Reaktor

Global Gyrokinetic Simulation of

Turbulence in

ASDEX Upgrade

gene.rzg.mpg.de

- Gute Übereinstimmung mit Experiment Defizite noch an Rändern
- Anisotropes Teilchenverhalten

© Zohm,IPP

Fusion, Radioaktivität, Kritikalität

- Keine primäre Radioaktivität (außer ³T-Tritium- 12.3 HWZ)
- Neutronen induzieren Kernreaktionen
 - Bildung neuer Nuklide (Absorption, Spaltung, Aktivierung)
 - Intelligente Stoffauswahl
 - kurzlebige Aktivierung (~ 100 Jahre)
 - Aktivierte Stoffe nicht volatil
- Hoher Neutronenfluss
 - Nachwärmeerzeugung
 - Schädigung des Materials (Schwellen, Versprödung)
 - Ingenieurherausforderung
- Keine Leistungsexkursion bei Verlust Zündbedingung (im Gegensatz zu AKW)

WEGE ZUM FUSIONSKRAFTWERK

EU Fusionsstrategie – "Fahrplan"

ITER: Erstes brennendes Fusionsplasma (Q = 10)

Essentielle Physik & Technologieträger für DEMO

Q=10

2030

ITER

DEMO

2050

2040

DEMO: Demonstration der Machbarkeit eines Fusionkraftwerks (FPP)

- Wahrscheinlich Tokamak
- Nettoproduktion elektr. Stroms ($Q_{eng} > 1$)

FPP: Kommerzielles Fusionskrafwerk

Stellarator oder Tokamak

2020

2010

EU "Fahrplan" – zentrale Aspekte

ITER

- Q = 10,500 MW Fusionsleistung
- nukleare Umgebung (~ 1 dpa)

DEMO

- Nettostromerzeugung (Q_{eng} > 1)
- Qualifikation von Materialien bei hohen Neutronenflüssen (~ 100 dpa)
 Materialbestrahlungseinrichtung IFMIF
- Tritiumselbstversorgung
- einziger Schritt zwischen DEMO und Kraftwerk
- DEMO Design muss parallel zu ITER entwickelt werden

Stellarator

2014

23

- inhärent stationär
- gutmütige Betriebsbedingungen

Eckpunkte auf dem Weg zum Fusionskraftwerk

- Leistungsfähigkeit eines Fusionskraftwerks definiert durch
 - Tripelprodukt: Dichte, Temperatur, Einschlusszeit
 - Plasmaexperimente bei prototypischen Werten
 - Fusionsleistung und Effizienz (Kraftwerk)
 - Technologien zum Betrieb, Brennstoff- u. Leistungsmanagement

Grundvoraussetzung:

- Hinreichendes Plasmavolumen (
 Gesamtgröße)
- Technologienachweise (prinzipielle Machbarkeit, Effizienz, Sicherheit)

Energieversorgungsaspekt

- (Quasi-)stationäres Kraftwerk
 DEMO
- Fusion ist eine internationale Herausforderung
- Grundvoraussetzungen
 - Internationalität
 - Interdisziplinarität
 - Mobiltität

FORTSCHRITTE IN DER FUSIONSFORSCHUNG

FUSION am **KIT**

- Ziel: Entwicklung von Technologien zur Realisierung der Fusion als Energiequelle
- Arbeitsgebiete am KIT
 - Ingenieurtechnik "Fusion Engineering"-
 - "Fusionsmaterialentwicklung und -qualifizierung"

Ingenieurtechnik - Fusion Engineering

Plasma Heizung und Stromtrieb

- ECRH Quellen Entwicklung
- ECRH Transport

Fusionsbrennstroffkreislauf

- Tritium-Handling-Messung
- Vakuumsysteme-Vakuumpumpen

Plasmanahe Komponenten

- Brutblanket
- Divertor
- Hochtemperatur -Heliumtechnologie

- Kraftwerksdesign u. -effizienz
 - Fernhantierte Wartung
 - Port Plug Engineering
 - Kraftwerkssystem &- dynamik
- Fusionsmagnete & Magnet komponenten
 - HT_c Stromzuführungen
 - Supraleitende Drähte & Kabel
 - HT_c Fusionsmagnete
 - Magnetsicherheit

Fusionsmaterialien

Material – Schlüsselschlüsseltechnologie der Fusion

- Niedrigaktivierbare Strukturmaterialien (Blanket, Divertor)
 - EUROFER Qualifizierung
 - Nanostrukturierte Stähle
 - "pfiffige" Refraktärwerkstoffe
 - Alternativmaterialien
 - Simulation und Modellierung
 - Abfall, Aufbereitung, Sicherheit
- Fusionsmagnetmaterialien
 - Substrate
 - Qualifizierung von Hilfs- und Hüllstrukturen
 - HT_c -Supraleiter Charakterisierung

Plasmaeinschluss, Performance

Herstellungs- und Fügeverfahren

- Herstellung & Formung von Refraktärmetallen.
- Fügeverfahren für Refraktärwerkstoffe
- Verbinden niedrig-aktiverbarer Stähle
- Material-Design Schnittstellen
- Sicherheit, Wartung, Verfügbarkeit
- **Fusionsbrutmeterialien**
 - Lithiumkeramik
 - Neutronenvervielfacher
 - Flüssigmetallkorrosion
 - Permeationsbarrieren

Brennstoff, Sicherheit, Haltbarkeit

Mikrowellenheizung: Gyrotronentwicklung

Funktionsweise

Energietransfer von EM-Wellen auf Elektronen bei deren Eigenfrequenz

Zweck:

- Plasmaheizung, Stromtrieb,
- Plasmastabilisierung durch bekämpfen lokaler "Blasen"

Vorteile ECRH:

- Hohe Frequenz erlaubt optische Übertragung mit Spiegeln
- Bei Einsatz mehrerer Frequenzen und Spiegel beliebiger Einstrahlort im Plasma

KIT-Entwicklung (mit CRPP u.a. und TED):

- 170 GHz Koaxialgyrotron für ITER 1(2) MW
 ECRH-Versorgung von W7-X:
- 10 Gyrotrons 1 MW (140 GHz, cw)

Einkopplung ins Plasma mit Launcher

Parameter:Magnetfeld:ca. 7 TBeschleunigung:ca. 80 kVElektronenstrahl:ca. 80 A

ITER-Tritium-Kreislauf ("Fuel Cycle")

$^{2}D + ^{3}T \rightarrow ^{4}He + n + 17,6 \text{ MeV}$

- Im Plasma ¹H, ²D, ³T und He + Verunreinigungen (Partikel von Wänden)
- Abpumpen nötig zur Entfernung der "He-Asche"& Partikel
- Abgas hat gleiche Zusammensetzung wie Plasma
 beinhaltet Tritium
- Weitere Tritiumentstehung durch

 - im Brutblanket (③ ,bei ITER: nur Testmodule)
 - Transmutation im Strukturwerkstoff (8)

Eigenschaften von Tritium:

- weicher ß-Strahler mit 20 keV Zerfallsenergie
- 12,3 Jahre Halbwertszeit
- physiologisch kritische Austauschreaktion von Wasserstoffatomen n

Tritium muss vollständig aus ITER-Stoffströmen abgetrennt und ins Plasma zurückgeführt werden

ITER-Tritium-Kreislauf ("Fuel Cycle")

TLK –

*T*ritium-*L*abor *K*arlsruhe

- Umgangsgenehmigung für 40 g Tritium
- Erfahrung seit 1995
- Weltweit einzigartig

ITER Fuel Cycle: Torus-Kryopumpen

ITER-Torus-Kryopumpe: ITeP-Entwicklung Funktionsweise:

- Kondensation von Gasen & Partikeln an kalter
 Oberfläche
- keine bewegten Teile im Magnetfeld
- diskontinuierlicher Betrieb

ITER Fuel Cycle: Torus-Kryopumpen

Test der Modellpumpe im ITeP

4.5 K - Kryopanels

Test-Blanket-Module

ITER: Tritium-Versorgung extern, (aber Erprobung von Brutkonzepten für DEMO)

Aufgaben des Brutblankets:

- Brennstofferzeugung ("Brüten")
- Wärmeabfuhr zur Leistungserzeugung
- Abschirmung der supraleitenden Magnete vor Neutronen

Test-Blanket-Modul – das "Herz" des Reaktors

Brutblanketanordung in einem DEMO

Aufgaben

- Erbrüten des Tritiums
- Abfuhr der Wärme
- Beitrag zur Abschirmung der Magnete

•••••

Randbedingungen

- Hohe Neutronenflüsse
- Große Wärmebelastung
- Schnelle Transienten
- Hinreichende Lebensdauer
- Fertigung Ein- und Ausbau Konzepte
- Festes Brutmaterial /Heliumkühlung
- Flüssiges Brut-/Kühlmaterial

Test-Blanket-Modul – das "Herz" des Reaktors

Berechnete therm. und mech. Spannungen

Blanketauslegung (Design) und Analyse:

- CAD Design eines Testblanketmoduls.
- Neutronische Analyse f
 ür Leistungserzeugung und Tritiumbr
 üten.
- Thermohydraulik der Heliumkühlung.
- EM Analyse bei Plasmadisruptionen
- MHD Analyse bei Flüssigmetallblankets
- Tritiumtransportmodellierung
- Sicherheitsberechnung hinsichtlich nuklearer Komponenten (z.B., RCC-MRx).

Test-Blanket-Modul

- Tritium ist radioaktiv.
- Halbwertszeit nur 12 Jahren 🔿 in Natur nicht vorhanden.
- Tritium muss der Reaktor aus Lithium herstellen (durch Spaltung "brüten"). Lithium 6

Potentielle Brutreaktionen

 ^{7}Li + $n \rightarrow {}^{4}He$ + T + n- 2.47MeV + $n \rightarrow {}^{4}He$ + T + 4.78MeV ⁶Li

Helium

HCPB-Test-Blanket-Modul-System

ITER- TBM-System

Testblanket-Modul-Herstellung?

Verwendete Verfahren:

- **Erodieren (Draht, Funken)**
- Heiss-isostatisches Pressen (HIP)
- Biegen
 - Fügetechniken (TIG, EB, Lötverfahren)
- **Neue Herstellungsrouten**

Randbedingungen:

- **Neue Materialien**
- **Höchste Beanspruchung**
- **Nukleare Lizensierung**

Keramikherstellung im freien Fall

Divertor-Entwicklung

Divertorfunktion:

Abfuhr der Asche (He, Partikel)

Physikalische Effekte

- Geladene Teilchen folgen Feldlinien
- X-Punkt trennt Zentralplasma von Sekundärplasma
- Durch Stöße und Druckgradient verlassen Abgase und Partikel Zentralplasma
- Abführung der Asche über Divertor

Techn. Herausforderungen Divertor

- Hohe Temperaturen
- Hohe Flächenleistungsdichten (10-20MW/m²)
- Hoher Ionenbeschuss (geladene Partikel Sputtern der Wand)
- Hohe Neutronenschädigung (ca. 15dpa/Jahr)
- Starke therm. Wechselbelastung

Divertor-Entwicklung

Material & Design Eckpunkte:

- Temperaturspitzen >1800°C
- Heliumerzeugung im Strukturmaterial durch Neutronen
- Intelligentes Design erforderlich

Designeckpunkte:

- Modularer Aufbau
- Zusammenfassung zu Modulen
- Nachweis der Machbarkeit bei prototyp. Leistungsdaten

Divertor-Entwicklung

Validierung (10MW/m²)

Reaktorskalierung

SS

Fügeverfahren

Plasmaraumkomponenten

Alles muss praxisnah getestet werden (Blanket, Divertor)

- 30m³ Vakuumkammer
- IR-Heizer (⇒500kW/m²)

- 1:1 Divertorexperiment (10-20MW/m²)
- 30m³ Vakuumkammer
- Elekronenstrahlkanone 800kW

Kühlkreislauf- HELOKA

Test der Blanketmodule (1:1) und Erfahrung bei Auslegung/Betrieb von hochbelasteten Kühlsystemen

- Betrieb seit 2011
- Parameter
 - Druck: 4-9.2MPa
 - Temperatur: 70-500°C
 - Durchsatz:
 - Heizelstung:
- 70-500 C 0.8-1.8kg/s 750kW

Materialinnovation

Plasma-Divertormaterial: 1.Option Wolfram (W) Wolfram inhärent:

- spröde
- rekristallisiert bei höheren Temperaturen ➡erneute Versprödung

Problem: Mikrostrukturierung

Strategien

- Nanostrukturierung
- Komposite
- Legierung

Starke Magnete brauchen Supraleiter

3 V

-270

- Starke Magnete brauchen hohen Strom (einige bis viele 1000 Ampere)
- Kupfermagnete sind unwirtschaftlich (hohe Stromkosten, werden heiß)

Lösung: Supraleiter

- Kein Widerstand bei tiefen Temperaturen
- Betrieb mit vielen 1000 Ampere bei wenigen Volt Spannung!
- Vorteil: Günstiger Betrieb
- Nachteil: Kühlung nötig

Andere Beispiele für Supraleitereinsatz heute:

- **MRI-Magnet** (Krankenhaus)
- Beschleunigermagnet (CERN)

Supraleiter und Spulen-Experimente

TFMC-Tests 2001:

- Spezifikation: 68 kA
- Ergebnis: 80 kA sind möglich

Wie kommt der Strom zu den kalten Magneten?

Analog zum heißen Kaffee in der Thermoskanne befinden sich die kalten supraleitende Magnete im Vakuum.

Der Strom muss also über **Stromzuführungen**

- elektrisch isoliert
- ins Vakuum und
- in die Kälte

KIT: Stromzuführungen mit Hochtemperatur-Supraleiter!

- 5x geringerer Energieverbrauch als bei Kupfer-Stromzuführungen
- Strom max. 80.000 A
- Isolation max. 13.000 V

Strom

Supraleiter und Spulen

HTSL-Stromzuführung (Entwicklung von KIT & CRPP):

68 kA nicht nur bei 50 K He – Kühlung, sondern auch bei 81 K $L-N_2$

→ Kosteneinsparung bei Kühlanlage

Procurement-Package an China vergeben, dort besteht Interesse an Kooperation

Hochtemperatur-Supraleiter: Coated Conductor Rutherford Kabel (CCRC) mit Roebel-Strands

Anforderungen für TF Spulen: I > 10 kA @ B > 10 T, T > 50 K

- Kanten-Biegewerkzeug zur Bestimmung von Winkel- und Radiusabhängigkeit der supraleitenden Eigenschaften
- CCRC Demonstrator-Kabel

AKTUELLE PROJEKTE

Stand von Wendelstein und ITER

Wendelstein – Ein Projekt in Deutschland

im Gegensatz zum Tokamak sind Stellaratoren intrinsisch stationär

Wendelstein

Seite 2012/2013 "Innenausbau"

ITER - Standort 2011

ITER - Standort 2014

Vision der FUSION

- praktisch unbegrenzte Ressourcen
- geographische Gleichverteilung der Ressourcen
- kein CO₂-Ausstoß
- keine Kritikalität Unfallfolgen auf die Anlage beschränkt
- kein langlebigen Spaltprodukte (Aufbereitung, Endlagerung)
- Zwischenlagerung ~60-100 Jahre
- Vielfältige technische Herausforderungen noch zu meistern Aber heute wie in der Zukunft :
- Spin-off in viele Technologiefelder (Supraleitung, Werkstoffe, Systemdynamik, Plasma, Vakuum, Fernhantierung,.....)

ERGÄNZUNGSFOLIEN

