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Focus & Difficulty of Numerical Modeling

——~CGas  Paradox btw. motion of oa
Liquid contact line & no-slip BC "5 WZ 0
Solid

a: volumetric phase fraction




Focus & Difficulty of Numerical Modeling

——~CGas  Paradox btw. motion of oa
Liquid contact line & no-slip BC "5 WZ 0

Solid

a: volumetric phase fraction

® This paradox can be resolved by:

Diffuse interface method
> e.g. Cahn-Hilliard model
» via mobility term

Sharp interface method
» e.g. Volume-Of-Fluid method
> via Navier-slip BC

o
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» Cis phase field
(difference in volume fractions)

» @ is chemical potential

& = iZC(C ~1)(C +1)= AV3C
E

» Lis slip length — difficult to
choose in physical sense!
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® Numerical method

® Governing equations
Allen-Cahn and Cahn-Hilliard equations for phase field advection

® Implementation in OpenFOAM®
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Phase Field Methods
(only Cahn-Hilliard model)

® Phase field (C) as phase indictor
» difference of volumetric phase fractions
» C =1 for liquid, C = -1 for gas

® Cahn-Hilliard equation for
phase field advection

£+ (u-V)C =xV°0
ot
0= C(C-1)(C+1)= AVEC
&

® Cahn-Hilliard equation is closely coupled
to momentum equation through
» Surface tension term

» Linear momentum, viscous stress terms and

buoyancy terms
(mixture properties: density and viscosity)
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Implementation in OpenFOAM®

® nterDyMFoam as starting point

® Cahn-Hilliard (CH) and Allen-Cahn
Equations (AC)
» CH: mobility term is a 4! order derivative
(for now treated in segregated manner with
time-step sub-cycling)
» AC: Lagrange multiplier to enforce phase
volume conservation property
® Relative density flux term in momentum
equation due to diffusion of components
» Consistent use of conservative volumetric
fluxes and central for volume conservation
® Surface tension term in energy
formulation
» Implemented as surface tension energy density

» explicit source term transferred to pressure
equation (Rhie-Chow interpolation practice)

Pseudo code:

while (runTime.run())

{

1. Solve transport equation
for phase field advection

2. Update chemical
potential

3. Calculate surface
tension, buoyancy &
mixture p, y

4. Solve N-S egs. for
velocity
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® Verification
® Mobility and surface tension term
® Equilibrium contact angle boundary condition



Verification of Mobility and Surface tension

® Mobility term: 4t order derivative

€ v -c-cnvie)
ot
» 8 cells for interface leads to very

good agreement

Cn =0.01

0.5

-0.5 2 cells in interface =—@=

4 cells in interface =—@=—
8 cells in interface

gl Analytical solution

0.46 0.48 0.52 0.54
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Verification of Mobility and Surface tension

® Mobility term: 4t order derivative ® Surface tension term

)
oC
—= VZ(C3 -C- CnZVZC)
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Capillary Rise Between Parallel Plates

® Neumann boundary condition for equilibrium contact angle 6

ﬁs-vcz—ﬁcos‘g (C2-1) 6 = 45°
2Cn

Time: 0.000

> wall adhesion force

ATOMSPHERIC PRESSURE | Q
/
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Capillary Rise Between Parallel Plates

® At equilibrium, capillary force is balanced by gravity
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and simulation results
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® Droplet Wetting

B 2D static mesh simulation
® 3D adaptive-mesh-refinement simulation



Capillarity-driven Droplet Spreading / Dewetting

Hydrophilic surface hydrophobic surface
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Capillarity-driven Droplet Spreading / Dewetting

0,= 45° 0,= 135°

Hydrophilic surface hydrophobic surface
3.5 | | ' '
W\ L*, Analytical(*) =—
3 L* Simulated | |
Initial shape H* Analytical(*) —
2.5 H* Simulated ®
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Final shape
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(*) Chen et al. 2009
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Capillarity- / Gravity-driven Spreading

9, = 60°

® EOtvos number (E0):

» Eo<<1
2 07! | capillarity-driven regime
T 06! | » Eo >.> 1 | |
0.5 t| Analytical capillarity reg. (*) = - gravity-driven regime
04! Analytical gravity reg.(**) o | > Eo=1
' Simulation results | " :
03 transitional regime

0.01 0.1 10

(*)Chen et al. 2009 (**)Dupont et al. 2007 (***) H’ : normalized height of droplet
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Capillarity-driven Droplet Spreading Process

Experiment by Zosel
1993: 0.
— Droplet spreading on flat 0.

smooth surface

B Ddroplet= 1.5 mm — X

Gravity effect negligible

— Variable of interest: time

evolution of base radius O

~
_—

N\ 0

r

(*)Zosel 1993
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3D Adaptive Mesh Refinement (AMR) Simulation

Time: 0.00

06.05.2014

45° inclined surface
Semi-symmetry

AMR near interface
(two-level refinement)

Ohnitiar = 90°
First spreading driven
by combined capillary

and gravity effect

Then sliding due to
gravity effect
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3D Adaptive Mesh Refinement (AMR) Simulation

Time: 0.00

06.05.2014

45° inclined surface
Semi-symmetry

AMR near interface
(two-level refinement)

Ohnitiar = 90°
First spreading driven
by combined capillary

and gravity effect

Then sliding due to
gravity effect
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Conclusions

® Phase field method has been implemented in OpenFOAM®

® The method has been verified in terms of
» Mobility term
» Surface tension force
» Equilibrium contact angle boundary condition

® The method is capable of simulating wetting phenomena

» predicting spreading/dewetting process
reproducing two spreading regimes (capillarity and gravity regimes)
achieving good agreement with experimental data

3D adaptive-mesh-refinement simulation of droplet spreading and
sliding

YV V V

X. Cai, M. Wérner, O. Deutschmann
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Ongoing work — Numerical Method Development

® Current state:

® Novel top-level solver: phaseFieldFoam, supporting foam-typical algorithmic
flexibility, e.qg.
rhoPhi = phaseField.correct(C, Phi)

® 3 new model libraries
(following common strategy design pattern; run-time selection via factory method)

» diffuselInterfaceModels

Abstract base class for diffuse interface models.
» diffuseInterfaceProperties

Diffuse interface mixture properties from phase transport properties.
» phaseContactAngle (generalization of alphaContactAngle)

Abstract base class for phaseContactAngle boundary conditions for both the volume-of-
fluid and the phase-field approach.

Static and dynamic contact angle models, e.g. FAM-based impl. of wall energy relaxation.
® Bunch of utilities for pre- and post processing, e.g. generic smoothField utility.

® Further steps:

® Implementation of so-called compensation scheme for wall energy relaxation model.

® [Implementation of block-coupled solution approach to phase field transport
(simultaneous solution of decomposed Cahn-Hilliard equation).



Ongoing work — Next Steps towards Application

® Pinning effect of droplet on inclined
surface

® Droplet wetting on chemically
heterogeneous surface / on rough
surface

® Wetting process on representative
complex geometry of sponge structure
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