

Remote Sensing in Complex Terrain – A Review

Stefan Emeis, Stuart Bradley Karlsruhe Institute of Technology, University of Auckland stefan.emeis@kit.edu

INSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, Atmospheric Environmental Research

Boundary-layer types

over different surfaces and complex terrain

Institute for Meteorology and Climate Research – Atmospheric Environmental Research

complexity of the first kind: land use changes

Warm cities influence local and regional weather (New York, May 28, 2011)

complexity of the second kind: orography

forced flows

complexity of the second kind: orography

thermally driven flows

thin arrows: slope winds night: downslope day: upslope

full arrows: valley winds night: out of the valley "mountain winds" day: into the valley "valley winds"

open arrows: regional winds ("Alpine pumping") night: into the planes day: towards the mountains

222

valley wind system in an alpine valley (one day)

multiple layers in a wintry alpine valley

NEW ZEALAND

acoutic backscatter (vertical temperature gradients)

wind direction

problems of volume averaging measurements in complex terrain

existing studies

Institute for Meteorology and Climate Research – Atmospheric Environmental Research some existing studies:

Bradley (ISARS 2008)	based on a potential flow analysis (cylinder model)
Bingöl et al. (MetZet 2009)	based on the assumption of linearly varying wind components
Bouquet et al. (ILRC 2010)	theoretical considerations similar to Bingöl et al., CFD model to derive realistic corrections to lidar measurements
Bradley et al. (BLM 2012)	Myres Hill, Scotland, Zephir lidar, AQ 500 sodar
Behrens et al. (BLM 2012)	5-beam sodar measurements by Paul Behrens in complex terrain probing in two different directions
Bradley (JTECH 2012)	potential flow, bell-shaped hill and escarpment

Bradley (2008) (ISARS 14, Risø)

potential flow, cylinder model

$$\frac{u}{U} = \frac{1}{U} \frac{\partial \psi}{\partial \eta} = 1 - h \left(L^2 + \frac{h^2}{4} \right)^{1/2} \frac{(x + \zeta_s)^2 - (z + \eta_s)^2}{[(x + \zeta_s)^2 + (z + \eta_s)^2]^2},$$

$$\frac{w}{U} = -\frac{1}{U} \frac{\partial \psi}{\partial \zeta} = -2h \left(L^2 + \frac{h^2}{4} \right)^{1/2} \frac{(x + \zeta_s)(z + \eta_s)}{[(x + \zeta_s)^2 + (z + \eta_s)^2]^2}.$$

$$L^2 = \left(\eta_0 + \frac{h}{2} \right) \left(\eta_0 + \frac{3h}{2} \right)$$

Behrens et al (2012) sodar observations versus potential flow (cylinder) model and two other models

Behrens P, O'Sullivan J, Archer R, **Bradley SG**. Underestimation of monostatic sodar measurements in complex terrain. *Boundary Layer Met.*, **143**, 97-106. DOI 10.1007/s10546-011-9665-6, 2012.

Bradley (2012)

potential flow (cylinder) model, for higher complexity more than one cylinder can be used, bell-shaped hill

Bradley SG, Perrot Y, Behrens P, Oldroyd A. Corrections for wind-speed errors from sodar and lidar in complex terrain. *Boundary Layer Met.*, **143**, 37-48. DOI 10.1007/s10546-012-9702-0, 2012

problems of volume averaging measurements in complex terrain

dimensional analysis

16 28.01.2014 Prof. Dr. Stefan Emeis | Review Complex terrain

Institute for Meteorology and Climate Research – Atmospheric Environmental Research

attached flow: how large is β ?

222

 $D = z \tan \alpha$

D is given by the instrument geometry

i.e., we still have to determine R

More general: preliminary parameter analysis

Influencing length scales

instrument:	scan conus diameter	D
orography:	radius of curvature surface roughness	R z ₀
atmosphere:	thermal stability height above ground	L z

non-dimensional numbers

. . .

orography:	terrain flatness terrain roughness	P1 = D/R P2 = z ₀ /R
atmosphere:	stratification	P3 = z/L

hypothetical influence terrain flatness D/R

hypothetical influence atmospheric stability z/L

hypothetical influence terrain roughness z₀/R

Conclusions:

non-homogeneous flow is a challenge for volume-averaging measurement strategies

examples shown were for vertical curvature, but horizontal curvature would cause problems as well

. . .

assessment by comparison of in-situ and volume-averaging measurements or by numerical experimentation

main influencing parameter: radius of curvature of streamlines secondary parameters: atmospheric stability surface roughness land use

First approaches for adjusting remote sensing wind data for spatial inhomogeneities exist, but further research is necessary.

Thank you very much for your attention

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association IMK-IFU Atmosphärische Umweltforschung Garmisch-Partenkirchen

www.imkifu.kit.edu