

Long-term annealing of advanced lithium metatitanate breeder pebbles

M.H.H. Kolb¹, R. Knitter¹, T. Hoshino²

¹Institute for Applied Materials, Karlsruhe Institute of Technology ²Fusion Research and Development Directorate, Japan Atomic Energy Agency

INSTITUTE FOR APPLIED MATERIALS

Broader Approach DEMO

- Agreement on a privileged partnership between Japan and EURATOM in support of ITER and an early realization of fusion energy
- ▲ 3 projects
 - IFMIF/EVEDA
 - ST<u>P (JT60/SA)</u>
 - T5-3: Characterization of pebbles
 - Study on the stability of advanced Li₂TiO₃ (JA) and Li₄SiO₄ (EU) pebbles during exposure to purge gas atmospheres
 - Chemical and micro-structural characterization of exposed pebbles
 - Task 1..4

s for DEMO Blanket

Contents

- Experimental
 - Annealing setup
 - Experimental conditions

メ Results

- Porosity & density
- Microstructure
- Chemical composition & impurities
- Appearance
- Mechanical strength

Conclusions

2 October 2014

Annealing setup & conditions **EXPERIMENTAL**

Experimental setup

Experimental conditions

SamplesEmulsion method pebblesSol-gel method pebbles	Li _{2.16} TiO _{3.08} Li _{2.11} TiO _{3.055}
Annealing temperature:	900° C
 Annealing for: Temperature during sampling: Heating/cooling rate: The period of sampling is not considered. 	4, 32, 64, 128 days 300° C 5 K/min dered as annealing time
Atmosphere: Pressure: Flow rate: 	He with 0.1 vol.% H ₂ 1200 mbar, absolute 1.2 l/h (reference: 8000 l/h)

▲ Sample preparation:

1 hour at 300° C in vacuum

2 October 2014

Annealing atmosphere

Released gases during the experiment

Morphological, mechanical and chemical characterization **RESULTS**

Porosity

- Mild increase in density over annealing time
 - Post-sintering densification
 - Developing of open and closed porosity

Microstructure

Emulsion method pebbles

Microstructure

▲ Sol-gel method pebbles

Chemical & phase analysis

2 October 2014

Reproduced from Mergos et al.

(2009) Materials Characterization 60 (8)

Appearance

Mechanical properties

- Very high initial rigidity
- Significant decrease of crush load with continued annealing
 - Commonly observed grain size dependence for non-cubic ceramics
 - Usually explained by thermal expansion anisotropy
 - Comparably small optimum grain size hints at high anisotropy

Conclusions

- ▲ Long-term annealing for a maximum of 128 days
 - Continuous monitoring of process values
 - Reasonable mimicking of the blanket conditions
 - Continuous release of gaseous species
- Advanced lithium metatitanate breeder pebbles withstand these conditions well over 128 days of annealing
 - Grain size of the pebbles increases significantly
 - Single phase ß-Li₂TiO₃ pebbles are maintained
 - Almost linear loss of lithium might be an issue in the very long-term
 - Reasonable crush load values after 128 days of annealing
 - Strong dependence of the crush load on the grain size
 - Optimum grain size for maximum rigidity: about 4 μm
 - Limiting grain growth as a potential future target
 - Fabrication method does not impact the long-term behavior of the pebbles

Thank you for your attention

INSTITUTE FOR APPLIED MATERIALS

www.kit.edu