

**Institute for Advanced Sustainability Studies IASS in Potsdam** 

# HEAT WAVES, URBAN VEGETATION, AND AIR POLLUTION

Galina Churkina, Ruediger Grote, Boris Bonn, and Tim Butler

## Objective

- To investigate how heat waves affect emissions of volatile organic compounds (VOC) from urban/sub-urban vegetation and corresponding ground-level ozone levels.
- Case study Berlin, Germany

#### 2003



# Heat Waves

2010



Image courtesy NASA



# Urban Heat Island Effect





### Biogenic volatile organic compounds (BVOC)



#### Temperature and light



Insect outbreaks



Lawn mowing





#### Ground level ozone: Health hazard



#### Ground-level ozone: Reduction of plant growth







Tilia 36 %
Acer 20 %
Quercus 9%
Platanus 6%
Robinia 3%
Other 19%

# Selected popular urban trees and their average VOC emissions rates



#### Methods

- Observations of temperature, humidity, ozone
- Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM)

# Temperature is an important driver of isoprene emissions



12 June-11 August 2014, Berlin, Germany Temperature from BLUME network (Berlin Senat), isoprene from PTR-MS measurements (IASS)

## Results: Heatwave 2006



## Results: Heatwave 2006



# Heat island effect in Berlin



# Isoprene 0.002 0.0015 08:00 16:00 65 60 55 50 45 45 40 35 30 25 20 Ozone 25 20 15



