

Integrated approach for hybrid CAD and mesh geometry based fusion multi-physics coupled analyses

Yuefeng Qiu, Lei Lu, Ulrich Fischer

Institute for Neutron Physics and Reactor Technology, KIT

Introduction

- Coupling approach
- Implementation details
- Test verifications

Introduction

- Coupling approach
- Implementation details
- Test verifications

Introduction

Introduction

Coupled multi-physics analyses for fusion device component

- CAD/Mesh conversion tool for Monte Carlo (MC) neutronics codes;
- Data transfer tool for translating MC results for TH/SM codes;
- Implementation and integration of tools into a suitable platform;

Karlsruhe Institute of Technology

Outline

- Introduction
- Coupling approach
- Implementation details
- Test verifications
- Summary

Coupling approach

SALOME

- Open-source integration platform;
- GEOM module: CAD modelling;
- SMESH module: Mesh generation;
- ParaView module: Data visualization.
- MC codes
 - MCNP5/6
 - TRIPOLI-4
- TH/SM codes
 - Fluent
 - CFX
 - ANSYS Workbench
- To be developed and integrated
 - MC geometry conversion tool
 - MC data transfer tool
 - All the missing links

Introduction

Coupling approach

Implementation details

- MC geometry conversion
- A novel meshing approach
- MC data translation
- Data Visualization
- Test verifications
- Summary

MC geometry conversion

- McCad
 - MC geometry conversion tool developed at KIT
- New McCad in SALOME
 - Geometries are managed in a new tree structure;
 - Model persistency using a project file.
 - Internal data sharing with GEOM and SMESH modules.
- Hybrid geometry conversion
 - New interface for MCNP6
 - Import/generate unstrucutred mesh and convert to Abaqus format.

Y. Qiu, Institute for Neutron Physics and Reactor Technology (INR)

28th Symposium on Fusion Technology (SOFT 2014), 29th Sept. – 3rd Oct., San Sebastián, Spain

A novel meshing approach

- Mesh application in MC codes
 - Results scoring
 - Geometry description
- A meshing approach for MC geometry

STL

- Tessellation-Tetrahedralization (TT) approach
- Tessellation: Triangulating solids into surface meshes
 - Deflection: maximum allowable chordal deviation for a mesh edge to the surface
 - Relative Deflection (RD): Deflection value adjust to the size of the solid
- Tetrahedralization: Tetrahedral mesh generation conforming to the surface mesh

Tetgen

	ANSYS mesh	TT Mesh
Elements	901	102
Volume diff.	2.2%	0.5%

02.10.2014

10

SALOME

CAD

Open Cascade

McCad

Abagus

28th Symposium on Fusion Technology (SOFT 2014), 29th Sept. – 3rd Oct., San Sebastián, Spain

MCNP6

MC data translation

- McMeshTran
 - A <u>MC</u> <u>Mesh</u> and data <u>Tran</u>sformation/ <u>Tran</u>slation/<u>Tran</u>sfer tool
 - Physical conservative data mapping using volume-weighted interpolation
 - Interacting with SMESH, ParaView
- MC/TH/SM interfaces
 - MCNP Mesh tally
 - MCNP6 unstructured mesh results
 - TRIPOLI Mesh tally
 - Fluent user-defined function (UDF)
 - CFX user fortran
 - ANSYS Workbench CSV data
- A CAD plugin for ParaView

Physical conservative data interpolation

Introduction

- Coupling approach
- Implementation details
- Test verifications
 - Verification of the TT meshing approach
 - Verification of hybrid geometries
 - Verification of CFD interfaces

Verification of the TT meshing approach

- ITER Benchmark model
 - simplified 40° ITER sector

ITER	Alite	80°
	/ 1110	00

Based on the A-lite 40° reference model for analyzing Neutral Beam system

CAD

	RD=0.01	RD=0.001	
CAD Solids	932		
CAD volume(m ³)	6.2282×10 ³		
Mesh volume(m ³)	6.2211×10 ³	6.2275×10 ³	
Volume difference	0.11%	0.01%	
Mesh elements	1.511×10 ⁵	5.534×10 ⁵	
Meshing time (s) *	4.6	17.1	
Lost particles **	33/10 ⁸	156/4×10 ⁸	

	RD=0.01	RD=0.001	
CAD Solids	4296		
CAD volume(m ³)	1.7804×10 ⁴		
Mesh volume(m ³)	1.7836×10 ⁴	1.7801×10 ⁴	
Volume difference	0.18%	0.02%	
Mesh elements	4.485×10 ⁵	2.157×10 ⁶	
Meshing time (s) *	19.9	45.2	
Lost particles**	2/10 ⁸	11/3×10 ⁷	

*PC with Intel Core i7-4770 (3.40 GHz) processor

** MCNP6 calculation with void material and volume source

Y. Qiu, Institute for Neutron Physics and Reactor Technology (INR)

Verification of the TT meshing approach

TBM test case

 a test case model derived from Helium Cooled Pebble Bed Test Blanket Module (HCPB TBM)

	RD=0.01	RD=0.001	ANSYS (coarsest sizing)
CAD Solids		77	
CAD volume(m ³)		1.6519×10 ⁻¹	I
Mesh volume(m³)	1.6494×10⁻¹	1.6517×10⁻¹	1.6277×10 ⁻¹
Volume difference	0.15%	0.01%	1.46%
Mesh elements	1.410×10 ⁵	3.238×10 ⁵	7.624×10 ⁵
Meshing time (s)	4.8	8.6	630
Lost particles	0/10 ⁶	0/10 ⁶	0/10 ⁶

MCNP6 test calculation

		TT mesh		ANSYS
CSG	CSG	RD=0.01	RD=0.001	mesh
Preproc.	0.94	0.37	0.88	136.45
Simulation	93.09	483.38	684.14	4646.17

TT approach: fast, accurate, economic

Verification of hybrid geometries

TBM test case

- Mesh of a breeder unit is generated by ANSYS ICEM
- Hybrid model converted by McCad
- Heating results compared with cell-based heating tallies of CSG model
- Tiny overlap problem
 - A tiny overlap (~3e-5 mm) found in cooling plate
 - MCNP6 failed in handling the tiny overlap

Subcom- ponent	MCNP tally result (W)	MCNP UM result(W)	Diff.
Beryllium	1.5555×10 ⁴	1.5787×10 ⁴	1.49%
Cooling plate	1.8036×10 ³	1.7596×10 ³	2.44%
Lithium orthosilicate	1.0862×10 ⁴	1.0821×10 ⁴	0.38%

28th Symposium on Fusion Technology (SOFT 2014), 29th Sept. – 3rd Oct., San Sebastián, Spain

Verification of CFD interfaces

CFD analysis of TBM First Wall (FW)

- Mesh of 1/6 FW was geneated by ANSYS Workbench
- Heat source is translated by McMeshTran from nuclear heating mesh tally of CSG model to Fluent and CFX interface files

1/6 FW model

Nuclear heating

- Fluent and CFX comparison
 - Fluent and CFX simulation based on the identical mesh and conditions
 - The temperature results of the two CFD codes agree very well

- Introduction
- Coupling approach
- Implementation details
- Test verifications

- An integrated approach has been developed for coupled fusion multi-physics analysis
- Two key modules MC CSG and Mesh geometry conversion tool McCad and MC data translation tool McMeshTran, have been integrated into SALOME;
- Interfaces has been developed for MC codes MCNP5/6, TRIPOLI, CFD codes Fluent and CFX and SM software ANSYS Workbench;
- A novel TT meshing approach has been proposed for generating MC geometry meshes in a fast, accurate and economic way;
- Several test verifications have been carried out, the reliabilities of the developed tools and interfaces has been proven.

Courtesy of hypothyroidmom.com