

Demonstration of Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulations Using Serpent 2/ SUBCHANFLOW

M. Daeubler, A. Ivanov, V. Sanchez

Institute for Neutron Physics and Reactor Technology (INR) Reactor Physics and Dynamic Group (RPD)

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Outline

- 1. Internal coupling between Serpent 2 and SUBCHANFLOW
- 2. Stochastic mixing fall back for TMS method
- **3.** Channel and sub-channel TH solution verification
- 4. Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulation

Thermal-hydraulic feedback modeling in Serpent

- Half-internal' universal multi-physics interface
- Four types of interface:
 - piecewise constant distributions on regular meshes (type 1),
 - weighted averages of point-wise values (type 2),
 - a user-defined functional dependence (type 3)
 - unstructured three-dimensional meshes (type 4)
- Enabling the interface implies using the target motion sampling (TMS) method
- TMS is not compatible with thermal bound scattering and unresolved resonance treatment

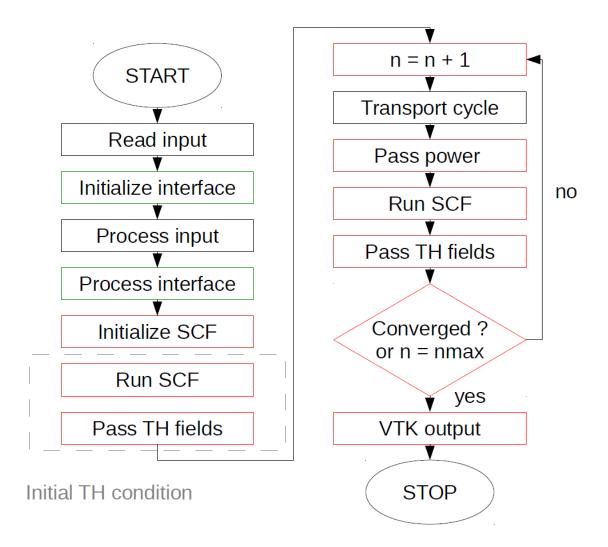
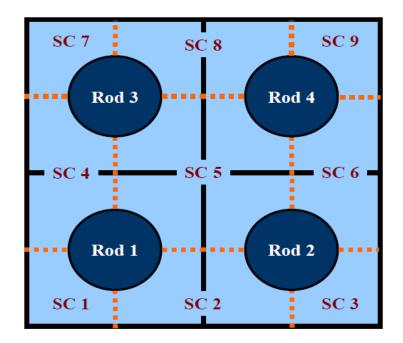

Internal Serpent/SUBCHANFLOW coupling Karlsruher Institut für Technolog SERPENT Data exchange COUPLING **BUILT-IN MODULES (FINIX & COSY)** via memory Density and temperature Fission Power and distributions and fue INTERNAL Fast Flux dimensions **MC TRACKING ROUTINE** EXTERNAL COUPLING Density and temperature Fission Boundary distributions and fue Power and conditions dimensions Fast Flux **SUBCHANFLOW MULTI-PHYSICS INTERFACE** ASCII Fission Density and temperature distributions and fuel Power and dimensions Fast Flux file I/O EXTERNAL SOLVERS FOR THERMAL HYDRAULICS AND FUEL BEHAVIOR

Figure: Multi-physics coupling scheme in Serpent 2

Serpent/SCF coupled iteration algorithm



Spatial mapping between Serpent and SCF

$$T_{dopp} = (1 - \alpha) T_{f,c} + \alpha T_{f,s}$$

Channel and subchannel level TH models possible

Relaxation scheme and convergence criteria

Relaxation scheme developed by J. Dufek et al.

$$\phi^n = \frac{1}{n} \sum_{i=1}^n \widetilde{\phi}^i$$

$$\phi^n = \left(1 - \frac{1}{n}\right) \,\phi^{n-1} + \frac{1}{n} \,\widetilde{\phi}^n$$

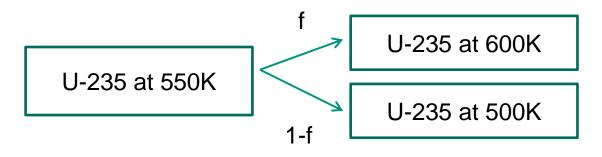
Convergence checking based on I2 norm

$$\frac{\Delta X}{X} = \frac{\left\| X^n - X^{n-1} \right\|_{l^2}}{\|X^n\|_{l^2}} \le \epsilon_X$$

Assuring a converged solution

- Coupled convergence is limited by maximum statistical uncertainty of Monte Carlo power tally
 - → Global variance reduction, i.e. The Uniform Fission Site method (UFS)
- Testing convergence of fission source: Shannon entropy evaluated on a superimposed mesh
- Statistical uncertainty of all coupled fields only available by replica runs

Outline


- 1. Internal coupling between Serpent 2 and SUBCHANFLOW
- 2. Stochastic mixing fall back for TMS method
- **3.** Channel and sub-channel TH solution verification
- 4. Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulation

- TMS method is limited to cases without
 - Thermal bound scattering
 - Need for treatment of unresolved resonance range
- Most coupled Monte Carlo thermal-hydraulic tools utilize stochastic mixing to realize changing cross sections with temperature

Let Serpent automatically fall back to stochastic mixing where TMS is not applicable

Role of majorant cross section with varying material density and temperature (1/2)

1. Sample neutron path length from

$$L = -\frac{\log(\xi)}{\Sigma_{maj}}$$

Method only discussed for 0K basis CE cross sections

 ξ is a uniformly distributed random variable

- 2. Accept or reject collision point candidate based on $g(\vec{r}) = \frac{\rho(\vec{r})}{\rho_{max}}$
- 3. Sample collision nuclide based on nulide-wise majorants $p_n = \frac{\sum_{maj,n} (E)}{\sum_{maj} (E)}$
- 4. Sample velocity and direction of target from Maxwellian distribution, switch into target-at-rest frame

Role of majorant cross section with varying material density and temperature (2/2)

5. Accept or reject collision point candidate based on

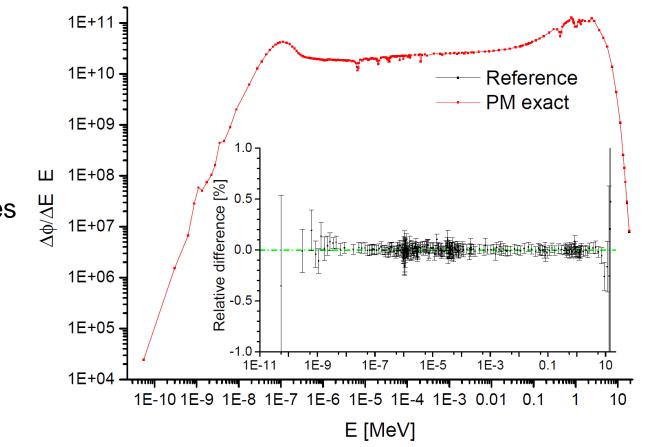
$$\xi < \frac{\Sigma_{tot,n}^{K}(\vec{r}, E')}{\Sigma_{maj,n}(E)}$$

6. Sample reaction type based on nuclide microscopic cross sections

Bound atoms do not have a Maxwellian velocity distribution

Stochastic mixing fall back for TMS

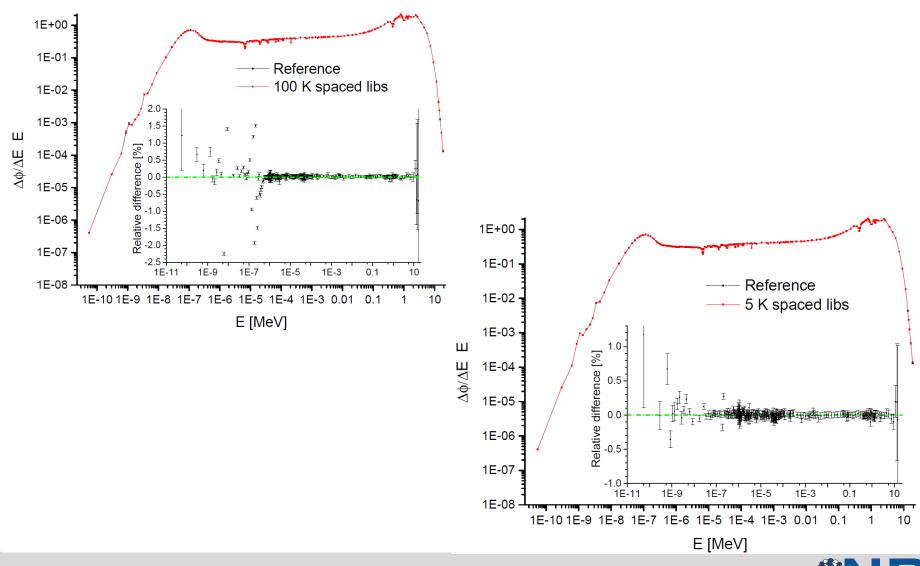
4. If collision nuclide has no thermal scattering data associated with it Sample velocity and direction of target from Maxwellian distribution, switch into target-at-rest frame


else

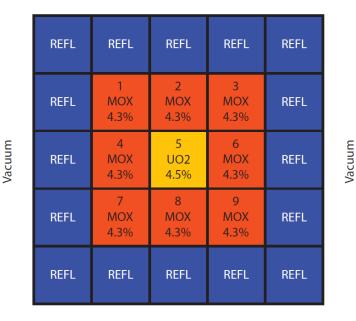
identify two scattering nuclides with temperatures enclosing the local temperature, compute the mixing fraction and use it to sample which scattering nuclide to use, do NOT transform into target-at-rest frame

Code verification for stochastic mixing fall back

- Infinite lattice of 3.65755m high fresh UOX 4.2wt% fuel pins
- Two axial water zones: 500K and 600K
- Fuel temperature
 900K and structures
 at 600K



Necessary temperature spacing of $S(\alpha,\beta)$

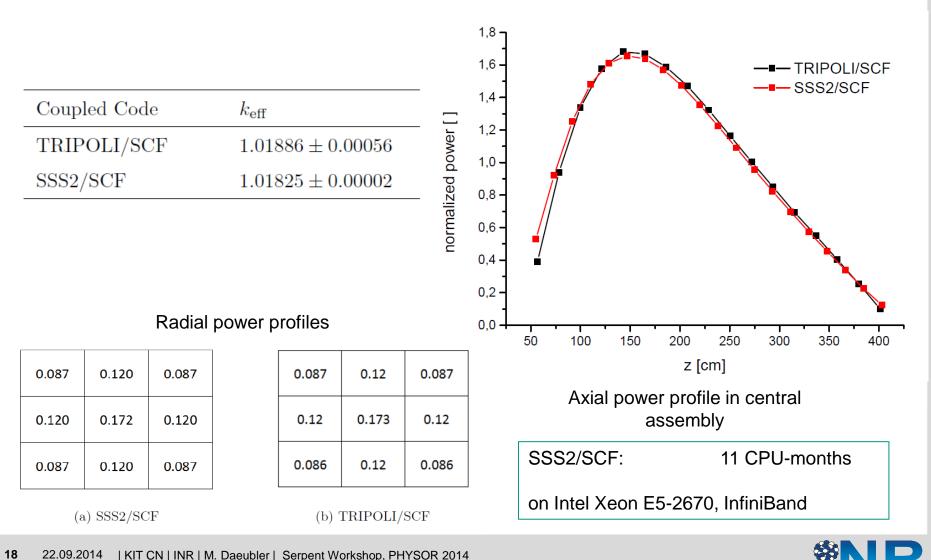

Outline

- 1. Internal coupling between Serpent 2 and SUBCHANFLOW
- 2. Stochastic mixing fall back for TMS method
- 3. Channel and sub-channel TH solution verification
- 4. Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulation

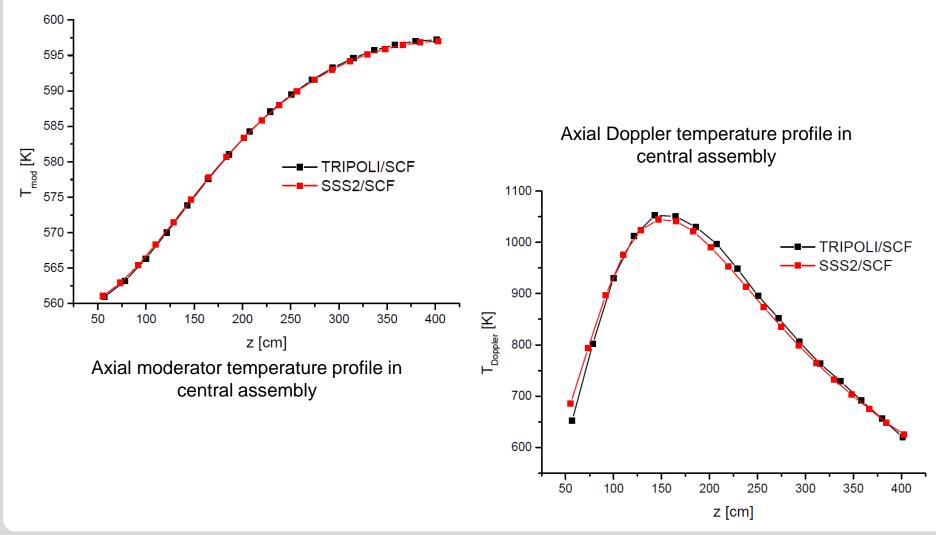
Channel TH solution verification case (1/3)

- Karlsruher Institut für Technologie
- Code-to-code benchmark with TRIPOLI/SUBCHANFLOW
- 3x3 minicore from NURISP boron dilution benchmark
- JEFF 3.1.1 CE nuclear data
- Coupled convergence <1% for TH fields</p>

Quantity	Value
Power	$100\mathrm{MW}$
Core mass flow rate	$739.08\mathrm{kg/s}$
Outlet pressure	$15.4\mathrm{MPa}$
Coolant inlet temperature	$560\mathrm{K}$
Boron concentration	$200\mathrm{ppm}$


Vacuum

Vacuum


Channel TH solution verification case (2/3)

Channel TH solution verification case (3/3)

Sub-channel TH solution verification case (1/3)

Code-to-code benchmark with MCNP5/SUBCHANFLOW

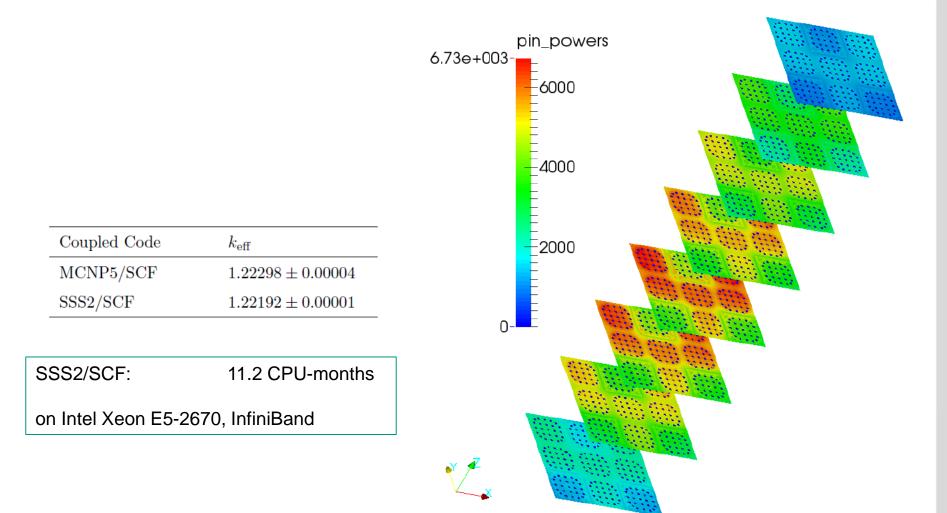
reflective

- 3x3 minicore from HPMC project, sub-channel
- JEFF 3.1.1 CE nuclear data
- Coupled convergence <0.05% for TH fields</p>

UOX MOX UOX 4.2wt% 4.2wt% 4.3wt% UOX UOX UOX 4.2wt% 4.2wt% 4.2wt% MOX UOX MOX 4.3wt% 4.2wt% 4.3wt%

Quantity	Value
Power	$166.24\mathrm{MW}$
Core mass flow rate	$739.09 \mathrm{kg/s}$
Outlet pressure	$15.45\mathrm{MPa}$
Coolant inlet temperature	$560\mathrm{K}$
Boron concentration	$1200\mathrm{ppm}$

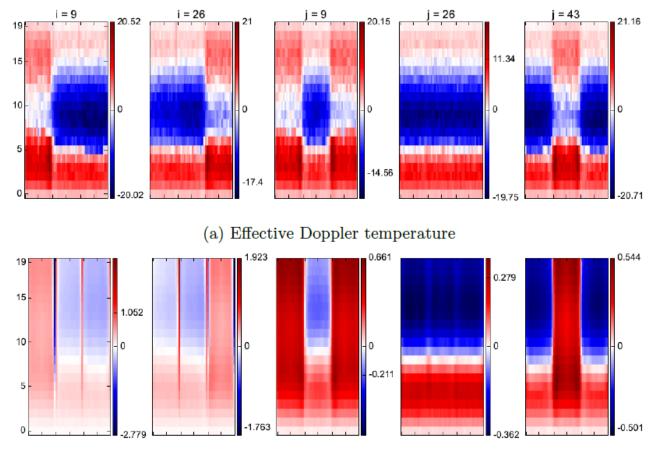
reflective



reflective

reflective

Sub-channel TH solution verification case (2/3)



Sub-channel TH solution verification case (3/3)

Absolute differences in Kelvin for five vertical cuts through minicore

(b) Moderator temperature

Outline

- 1. Internal coupling between Serpent 2 and SUBCHANFLOW
- 2. Stochastic mixing fall back for TMS method
- **3.** Channel and sub-channel TH solution verification
- 4. Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulation

Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulation (1/6)

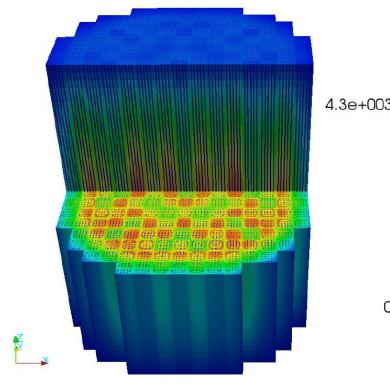
 Channel and sub-channel TH model of OECD NEA and U.S. NRC PWR MOX/UO2 core transient benchmark

11.1.001							i i
U 4.2%	U 4.5%	M 4.3%	U 4.5%				
32.5	17.5	35.0	20.0				
U 4.5%	M 4.0%	U 4.5%	M 4.3%	U 4.2%	U 4.5%		
(CR-C)		(CR-B)		(CR-SC)			
0.15	0.15	0.15	0.15	17.5	32.5	_	
M 4.3%	U 4.2%		U 4.5%	U 4.5%	M 4.3%	U 4.5%	
	(CR-SB)		(CR-SC)				
17.5	32.5	17.5	20.0	0.15	0.15	32.5	
U 4.%	U 4.2%	U 4.2%	U 4.2%	U 4.2%	U 4.5%	U 4.2%	
(CR-SB)				(CR-D)		(CR-SA)	
37.5	0.15	22.5	0.15	37.5	0.15	17.5	
U 4.5%	M 4.0%	U 4.2%	M 4.0%	U 4.2%	U 4.5%	M 4.3%	U 4.5%
					(CR-SC)		
0.15	22.5	0.15	37.5	0.15	20.0	0.15	20.0
U 4.2%	U 4.5%	U 4.2%	U 4.2%	U 4.2%	M 4.3%	U 4.5%	M 4.0%
(CR-A)		(CR-C)				(CR-B)	
22.5	32.5	22.5	0.15	22.5	17.5	0.15	35.0
U 4.2%	U 4.2%	U 4.5%	M 4.0%	U 4.2%	U 4.2%	M 4.0%	U 4.5%
					(CR-SB)		
0.15	17.5	32.5	22.5	0.15	32.5	0.15	17.5
U 4.2%	U 4.2%	U 4.2%	U 4.5%	UOX 4.5%	M 4.3%	U 4.5%	U 4.2%
(CR-D)		(CR-A)				(CR-C)	
35.0	0.15	22.5	0.15	37.5	17.5	0.15	32.5

Quantity	Value
Power	$3565\mathrm{MW}$
Core mass flow rate	$15849.4 \mathrm{kg/s}$
Inlet pressure	$15.5\mathrm{MPa}$
Coolant inlet temperature	$560\mathrm{K}$

Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulation (2/6)

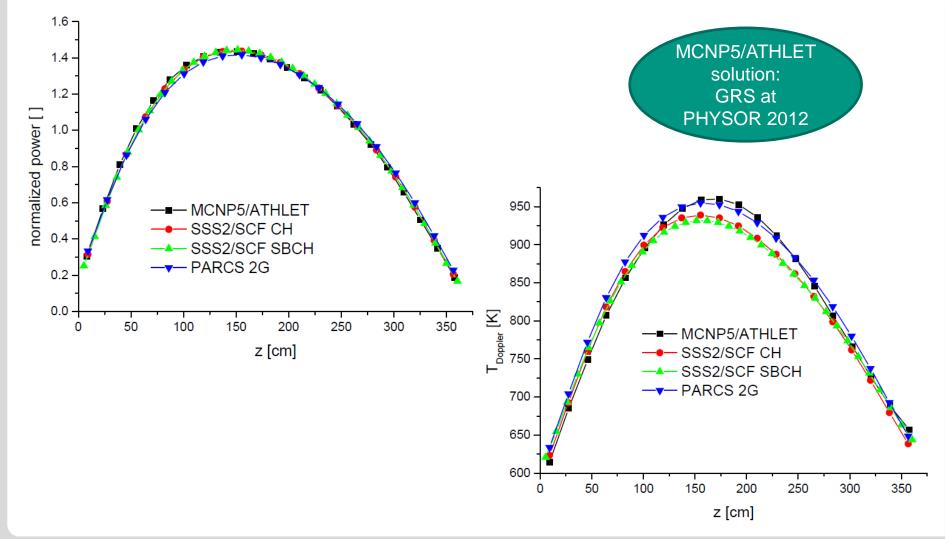
- Neutron transport model test with 2D HZP conditions
- Benchmark based on ENDF/B VI
- SSS2 used ENDF/B VII.0
- Coupled convergence <0.5%
 TH fields


	Eigenvalue	Assembly po	wer error
		%PWE	%EWE
nodal			
CORETRAN 1/FA	1.06387	1.06	1.69
CORETRAN 4/FA	1.06379	0.96	1.64
EPISODE	1.06364	0.96	1.64
NUREC	1.06378	0.96	1.63
PARCS 2G	1.06379	0.96	1.63
PARCS 4G	1.06376	0.90	1.42
PARCS 8G	1.06354	0.86	1.25
SKETCH-INS	1.06379	0.97	1.67
pin-by-pin			
BARS	1.05826	1.29	1.92
DeCART	1.05852	ref	ref
DORT	1.06036	0.86	1.12
MCNP	1.05699	0.67	1.26
DYNSUB 8G SP3	1.05888	0.70	1.09
SSS2	1.05862	1.22	1.68
	± 0.00001		

Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulation (3/6)

5M neutrons per cycle, 2000

SSS2/SCF CH:	3.7 CPU-years
SSS2/SCF SBCH:	5.8 CPU-years


on Intel Xeon E5-2670, InfiniBand

pin_pov	vers		active cycles per iteration							
4000										
		Critical	Average	Average	Average	Outlet	Outlet			
Ē		c_b	T_{Dopp}	$ ho_M$	T_M	$ ho_M$	T_M			
2000		[ppm]	[K]	[kg/m3]	[K]	$[\mathrm{kg}/\mathrm{m}^3]$	[K]			
Ē	nodal									
1000	CORETRAN 1/FA	1647	908.4	706.1	581.0	658.5	598.6			
Ē	CORETRAN 4/FA	1645	908.4	706.1	581.0	658.5	598.6			
-	EPISODE	1661	846.5	701.8	582.6	697.4	585.5			
	NUREC	1683	827.8	706.1	581.1	661.5	598.7			
	PARCS 2G	1679	836.0	706.1	581.3	662.1	598.8			
	PARCS 4G	1674	836.1	706.1	581.3	662.1	598.8			
	PARCS 8G	1672	836.2	706.1	581.3	662.1	598.8			
	SKETCH-INS	1675	836.6	705.5	580.9	659.6	598.9			
	pin-by-pin									
	DYNSUB 8G SP3	1600	824.3	705.1	580.6	678.8	593.1			
	SSS2/SCF CH	1593	824.6	702.8	582.5	660.5	599.2			
	SSS2/SCF SBCH	1599	819.7	704.0	582.1	660.8	599.4			

Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulation (4/6)

Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulation (5/6)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Α					-1.83	-4.89	-2.35	-2.65	-2.41	-4.95	-1.82				
В			-0.77	-0.03	-1.76	-0.93	-2.41	-0.73	-2.41	-0.91	-1.70	0.09	-0.59		
С		-0.76	-0.75	0.95	0.29	-2.08	-1.05	-2.16	-1.03	-1.98	0.40	1.05	-0.70	-0.66	
D		-0.04	0.99	-0.25	1.14	0.62	1.31	0.03	1.25	0.65	1.28	-0.12	1.07	0.13	
Е	-1.94	-1.77	0.27	1.12	-1.77	1.59	-0.62	2.26	-0.68	1.67	-1.62	1.28	0.43	-1.53	-1.69
F	-5.07	-1.05	-2.09	0.53	1.51	1.70	1.91	2.72	1.89	1.81	1.69	0.69	-1.89	-0.73	-4.75
G	-2.57	-2.56	-1 .1 4	1.14	-0.80	1.83	3.60	4.36	3.66	1.93	-0.65	1.27	-0.98	-2.26	-2.23
н	-2.88	-0.90	-2.23	-0.16	2.16	2.61	4.26	3.27	4.41	2.76	2.25	-0.04	-2.17	-0.74	-2.63
Т	-2.52	-2.54	-1. 1 6	1.06	-0.91	1.69	3.50	4.30	3.61	1.87	-0.75	1.14	-1.09	-2.45	-2.44
J	-5.10	-1.10	-2.24	0.32	1.34	1.50	1.72	2.59	1.87	1.74	1.48	0.43	-2.18	-0.98	-5.01
к	-2.21	-2.00	0.06	0.87	-2.03	1.37	-0.88	2.07	-0.81	1.53	-1.90	1.02	0.15	-1.90	-2.00
L		-0.29	0.72	-0.55	0.79	0.30	1.02	-0.21	1.09	0.51	1.02	-0.38	0.81	-0.22	
м		-1.05	-1. 1 2	0.62	-0.04	-2.40	-1.28	-2.42	-1.26	-2.20	0.10	0.77	-0.98	-0.99	
Ν			-1.05	-0.30	-2.09	-1.29	-2.79	-1.10	-2.73	-1.13	-1.96	-0.19	-0.91		-
Р					-2.19	-5.29	-2.80	-3.11	-2.82	-5.23	-1.99			-	

Difference in percent assembly power between SSS2/SCF CH and PARCS 2G

Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulation (6/6)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A					0.21	0.17	0.15	0.23	0.15	0.17	0.21				
в			0.25	0.24	0.04	0.06	0.02	0.07	0.02	0.06	0.04	0.24	0.26		
С		0.26	0.08	0.11	0.20	0.12	0.29	0.09	0.29	0.12	0.21	0.11	0.09	0.26	
D		0.24	0.11	0.37	0.18	0.30	0.19	0.38	0.19	0.30	0.19	0.37	0.11	0.24	
E	0.21	0.04	0.21	0.18	0.33	0.23	0.27	0.24	0.27	0.23	0.33	0.19	0.21	0.04	0.21
F	0.17	0.06	0.12	0.30	0.23	0.32	0.38	0.38	0.38	0.33	0.23	0.30	0.12	0.07	0.17
G	0.15	0.01	0.29	0.18	0.26	0.38	0.39	0.38	0.39	0.38	0.27	0.19	0.29	0.02	0.16
Н	0.23	0.06	0.09	0.37	0.23	0.37	0.37	0.53	0.38	0.38	0.24	0.37	0.09	0.07	0.23
I.	0.15	0.01	0.29	0.18	0.26	0.37	0.38	0.37	0.39	0.38	0.26	0.18	0.29	0.01	0.15
J	0.16	0.05	0.11	0.28	0.21	0.31	0.37	0.37	0.38	0.32	0.22	0.29	0.11	0.06	0.17
к	0.21	0.03	0.20	0.17	0.31	0.21	0.25	0.23	0.26	0.22	0.32	0.18	0.20	0.03	0.21
L		0.23	0.10	0.36	0.17	0.28	0.18	0.36	0.18	0.29	0.18	0.37	0.11	0.24	
м		0.25	0.07	0.10	0.19	0.10	0.28	0.08	0.28	0.11	0.20	0.10	0.08	0.25	
N			0.25	0.23	0.03	0.04	0.00	0.05	0.00	0.05	0.03	0.24	0.25		
Ρ					0.21	0.16	0.14	0.22	0.14	0.16	0.21			23	

Difference in percent moderator temperature between SSS2/SCF CH and PARCS 2G

Future work

- Improve numerical performance and scaling of SSS2/SCF
- Domain decomposition for thermal-hydraulics
- Validate using NPP measurement data
- Work on efficient method to achieve converged fission source
- Extend coupling algorithm to cover burn-up calculations
- Extend coupling to Serpent's dynamic mode (dynSerpent)

