

Blankets - key element of a fusion reactor functions, design and present state of development

R. Stieglitz, L.-V. Bocaccini, K. Hesch

INSTITUT für NEUTRONENPHYSIK und REAKTORTECHNIK (INR)

- Operational frame
- Reliability, Efficiency
- Maintenance, safety
- Blanket development
- **ITER Testblankets, DEMO Blankets**
- Summary

- basic design
- final design & integration
- ➡validation

Fusion Reactor – Thermo-nuclear core -ITER

2

How to breed Tritium ?

Fusion – reaction

Capture neutron in nuclear reaction producing tritium

(n,t)-reaction on (suitable) naturally abundant nuclide

Crucial parameter: nuclear cross-section σ (measured in barn=10⁻²⁴cm²)
 σ dependent on incident neutron Energy (E) and angle (φ)

- Which nuclide / element / material ?
 - ⁶Li + n = T + ⁴He + 4.8 MeV or ⁶Li(n, α) T + 4.8 MeV

 7 Li + n = T + 4 He + n - 2.5 MeV or 7 Li(n,n' α)T - 2.5 MeV

(other potential reactions 3 He(n,p)T + 0.8 MeV, 2 H(n, γ)T+6.3 MeV)

Which configuration ?

- Breeder arrangement in *Blanket* around plasma chamber so that neutron absorbed in breeder
- Reactor constraints
 - Plasma chamber (80% for Blanket -coolant, structure material- 20% divertor & plasma heating devices)
 - Parasitic neutron absorptions (non breeding materials)
 - Neutron leakage (ports, diagnostics)
 - Need for neutron multiplication
- How to prove tritium breeding capability?
 - neutronic calculation (> method/data/geometry !)
 - calculation validation against experiment(s)

5 July 2014 | Stieglitz, Boccaccini,Hesch

Institute for Neutron Physics and Reactor Technology

production cross section σ [barn] ອີ້້ອີ 00 ⁶Li(n,α)T 7 Li(n,n' α)T 10 0.1 Ľ .01 1000 10⁴ 10⁵ 10⁶ 10 100 10^{7} incident neutron energy [eV]

Suitable Lithium-isotopes ?

- ⁶Li- high cross-section for low energies (loss of neutron)
- 7Li –activation energy threshold >6MeV
- Natural composition: 92.5% ⁷Li , rest ⁶Li.
- Iocal ⁶Li enrichment mandatory

Which form of Li-adequate ?

Requirements neutronic

High density, negligible absorption

Engineers

 chemical, mechanical, thermal stability, good tritium release behaviour, compatibility with structural material and coolant, irradiation behaviour

	Mass density [g/cm ³]	Li number density [10 ²² cm ⁻³]
Li_4SiO_4 (solid)	2.39	4.8
Li_2TiO_3 (solid)	3.43	3.63
Pb-Li (eutectic, liquid)	9.54 (500K)	0.517

Institute for Neutron Physics and Reactor Technology

Production of Tritium from Li?

reactor requires

number of tritons produced per second in blanket

 $TBR = \frac{1}{\text{number of fusion neutrons produced per second in plasma}}$

(Tritium self-sufficency criterion)

Constraints

- only neutron per fusion reaction
- plasma chamber not solely covered by blankets
- structure & functional materials "eat" (absorb) precious neutrons
- some neutrons escape (leakage)
- neutron multipliers are required

 E_n =14 Mev

Neutron multiplication ?

Required (n,2n) reactions with high σ in Energy range up to 14MeV

Beryllium (Be)

- low E for (n,2n)
- good moderator (shielding)
- small world ressources
- Be dust toxic

Lead (Pb)

- simultaneous use as coolant
- high availability, low cost
- corrosion with material
- weight
- activation through Po formation

RESULT > 2 technical blanket options

- Homogeneous liquid multiplier Pb mixed with Li as eutectic(acting also as coolant !)
- Heterogeneous- solid multiplier and solid breeder

Blanket - Fundamental function- "Cooling" Volumetric heating by P_n - What is behind that ? Interaction of different nuclei with matter scoping all reactions elastic and inelastic scattering, absorption, particle emission structure multiplier coolant breeder and associated γ -ray emission) Essential $\Sigma = N \cdot \sigma$ Σ =macroscopic nuclear cross-section [1/cm] σ =microscopic nuclear cross-section [1/cm] *N*=number nuclei [1/cm³] flux Φ_n $[1/(cm^{2} \cdot s)]$ reaction Lambert-Beer-Attenuation law volume I_0 $I_x = I_0 \cdot e^{-\Sigma x}$ $x=\Sigma^{-1}=\lambda$ mean free path I_0/e x (av. travelling distance before collision) $\Sigma \cdot dx =$ collision probability of neutron λ within dxInstitute for Neutron Physics and Reactor Technology July 2014 | Stieglitz, Boccaccini, Hesch 11

Blanket - Operational functions- "Structures"

Thermal and other loads cause additional material loads !!!

Requirement: $\sigma_{max} < \sigma_{Design}$ Where ? Everywhere, to be demonstrated

- σ_{max} = max. stress in Blanket
- σ_{Design} = max allowable material stress (material data base!!)

Several stress types present

- primary stresses = pressure, mech.loads (bend, torque,....)
- secondary stresses = thermal loads
- alternating stresses = cyclic loads

Thermal loads on FW –plate

- α = thermal exp. coefficient
- *E* = modulus of elasticity
- v = Poisson ratio

$$\sigma_{th,\max} = \frac{\alpha \cdot E \cdot (T_o - T_i)}{2(1 - \nu)} = \frac{\alpha \cdot E \cdot q_{rad} \cdot t}{2(1 - \nu) \cdot \lambda}$$

$$E = 1.8 \cdot 10^{11} \text{ Pa}$$

$$v = 0.3, t = 5 \text{mm}$$

$$(T_o - T_i) = 125^{\circ}\text{C}$$

$$q_{rad} = 0.5 \text{MW/m}^2$$

 $=18.10^{-5}1/(K)$

Example*

$$\sigma_{th,\max} \cong 290 MPa$$

* Boccaccini, 2012, lecture

14 July 2014 | Stieglitz, Boccaccini,Hesch

Blanket - Operational functions- "Structures" Design demonstration according to material data base * σ_d = design stress 250 σ_m = stress mises $\sigma_m = 1/3 \sigma_{UTS}$ $\sigma_{\rm UTS}$ =ultimate tensile strength 200 σ_t = fatigue strength $\sigma_t = (10^5 h, 2/3 \sigma_{cr})$ σ_{cr} = creep strengh 15۱ [Mba] 100 ع Stress criteria for elastic deformation** Primary stresses=equilibrium of forces & moments pressure, membrane, bending body forces allowed not self-limiting domain form factor f load type dependent 50 Secondary stress = strain-controlled (lot load contr.) thermal loads, joints ⁵⁰⁰ T [°K] ⁷⁰⁰ 900 300 self-limiting experience factors data base related * Tavassoli et al., J. Nuc. Mat. 329-333 (2004), 257 ** US Nuc. Reg. Com. regulatory guide ,2012 Practical example $\sigma_{prim} \leq f \cdot \sigma_m$ primary stresses from internal pressure (f = 1)+ bending (f=1.5) pressure

- total stress σ_{tot} ($\sigma_{tot} = \sigma_{prim} + \sigma_{se}$)
- trom data sheet σ_m =132MPa (*T*=773°K)

Institute for Neutron Physics and Reactor Technology

 $\sigma_{tot} \leq 3 \cdot \sigma_m$

 $\sigma_{tot} \leq 396MPa$

Blanket – Basic functions- "Interfaces"

Interface-functions

- coolant temp. to operate efficiently Power Conversion System (PCS)
- measure to extract tritium from coolant/breeder
- ISI&R and maintenance/extraction

Mainly two blanket lines existent

- Liquid Metal Blanket
 - Lithium metal (with or without ⁶Li-enrichment)
 - Pb-Li eutectic alloy (high ⁶Li-enrichment required)
 - self-cooled/cooled by He or water (or combination)
 - large blanket thickness ($\approx 60 80$ cm)
 - Helium Cooled Lithium Lead (HCLL)
- Solid breeder blanket with neutron multiplier
- Beryllium neutron multiplier
- beramic breeder materials: Li_4SiO_4 , Li_2TiO_3 , Li_2O
- only small blanket thickness needed ($\approx 30-50$ cm)
- Be/breeder configuration subject to optimisation
- Helium Cooled Pebble Bed (HCPB) blanket

Blanket – Basic functions- "Interface PCS"

Blanket

turbine

3

 P_{fus}

3**

Requirement: sufficient PCS coolant temperature for high efficiency η_{th} **PCS** Types

T

 $p_2 = p_{max}$

- Joule-Brayton (Gas turbine cycle)
- Clausius-Rankine (steam turbine)

Joule-Brayton - Process

- use of inert He
- demand for high η_{th} temperatures >700°C
- high material challenges
- high pumping power $\approx 8-10\% P_{fus}$

*G. DuBois, Belgatom 2002

intercooler

Blanket – Basic functions- "Interface ⇒ PCS"

Blanket - Basic functions- "Transfer fluid"

• Optimal coolact?

PbLi /Li	311 m	Water	Salt (FLiBe)	Criteria
++ + (if elec. Insulation) 	+ - ++	++ 	0 0 -	 Coolant capacity △T (heat transfer) pressure Magnetohydrodynamics
0	++	Poss	0	Coolant chemistry
++ ++		+ 0	+ 	Balance of Plantpumping powerthermal inertia
+(PbLi)/- (Li) +(PbLi)/- (Li)	++ 0		nges and	Tritiumbreeding /T-Inventoryextraction
 +	++ -	- -	 0	corrosion
(PbLi)/ -Li 0	++ ++ ++	0 - -	0 - 	 sate decomissioning action (incl. T-inventory) chemic raction (H₂O,O₂) decommissioning

Blanket – Basic design - "Fabrication"

How to fabricate modules ?

- First wall
- coolant ducts,
- breeder units and
- multiplier pebble beds

Example HCPB blanket

Alternative route FW coolant ducts

- prefabricated hipped sandwich
- square channel
- EB to seal

First wall coolant ducts

- prefabricated
- hot isostatic presses and

HCPB

bend

Institute for Neutron Physics and Reactor Technology

Blanket – Basic design - "Fabrication" **HCPB Breeder units** simple parts automatized fabrication and joining processes industrially available qualification procedures **NR** Institute for Neutron Physics and Reactor Technology July 2014 | Stieglitz, Boccaccini, Hesch 27

Blanket – Design - "Validation"

He- infrastructures to allow for prototypical scale testing

- HELOKA-HP (KIT, figures below), *p*=10MPa, *m*=2.4kg/s, *T*≈500°C
- HEFUS(ENEA) *p*=8MPa, *m*=0.35kg/s, *T*≈530°C
- KATHELO (KIT), *p*=10MPa, *m*=0.25kg/s, *T*≈850°C

IR radiation heaters (→W/m²)

HCPB

- 1:1 TBM exp., divertor exp. (10-20MW/m²)
- 30m³ vacuum chamber
- electron Beam Gun 800kW

Institute for Neutron Physics and Reactor Technology

Blanket – Basic design - "Structures"

Fundamental design – HCLL blanket

simple coolant/breeder/multiplier set-up homogenously mixed

Challenges

- Interaction of magnetic field with moving liquid
 magnetohydrodynamics (MHD)
- Corrosion of structures by lead
- Low soluability of Tritium in PbLi

modular breeder units

- robust simple modules
 pressure resistant
- central feeder /collector units reduced replacements efforts

Blanket – Basic design - "Verification" Magnetohydrdynamics MHD

strange velocity profiles dependent on wall conductivity c

Example *Ha*=50

33

MHD adapted flow arrangement required to ensure TH-integrity

MHD -experiments

Flow velocity depicts as electric potential ϕ on walls

$$\mathbf{v} \approx \frac{1}{B} \frac{\partial \phi}{\partial x}$$

Multi-channel effects reduced by counter-

Blanket – Final design - "Integration" **Requirements for a FPP** Life-time 40-60years Reliability >80% + decommisioning, repository, ... Limiting component factors: Plasma facing components accumulated dose fatigue, creep,..... **Blanket** mat. damage 100-150dpa 400appm/y He in mat activation limits remote handling, transfer life-time 3-5years Divertor mat. damage 15-30dpa fatigue 10-20MW/m² remote extraction life-time 1.5-2.5years

Institute for Neutron Physics and Reactor Technology

Blanket – Final design - "Integration" ŕ Institute for Neutron Physics and Reactor Technology July 2014 | Stieglitz, Boccaccini, Hesch 37

Plant – Final design - "Safety- Licensing" ALARA principle (As Low As Reasonable Achievable) for normal and off-normal events (low event frequency) design robustness and material choice (activation, self-limiting design) maintenance, reprocessing and disposal Safety demonstration (sequential nature) validation, basic design design verification **Top level** licensing DDD System analysis safety BoP (design description objectives Accident analysis Performance document) Defintion of safety functions Confinement **Functional safety Postulation of PIE** (Prevention offbasis site emergency confinement. responses) fusion power shutdown, barrier **Rad. Protection** decay heat removal, defintion Safety (Mitigation of monitoring, and **Defense in Depth** control of physical and dose limits **Demonstration** chemical energies (DiD-Barrier concept) otuside facility)

Blanket – Final design - "Integration"

Long term irradiation (12.5 MWa/m²) of a DEMO reactor first wall *Fischer, 2012

Design safety - 1st step material

- activation
- remote handling
- decomissioning, post-processing

RAFM 8-10%CrWTaV steels

- reference fast decaying Fe- alloys
- "Low level waste" after 80-900y
- Reduced amount of HLW
- Impurities Nb, Mo dominate grey domain
- Material irradation data base @ fusion specific spectrum still "sparse"
- IFMIF (Int. Fusion Material Irradiation Facility) mandatory

Blanket – Final design - "Integration"

Operational Safety

- **Pre-requisite**
- validated codes to predict loads

Example : EM analyses of Blankets

- Ferromagnetic materials during a plasma disruption.
- Coupling of EM-analysis to structural analysis.

postulated initiating event (PIE) => event tracking (FFMEA-analysis) => consequences

deterministic approach

statistical safety assessement Iikelyhood of event occurence

Blanket – Final design - "Integration"

Operational Safety- postulated initiating event (PIE)

What happen in case of full station black-out ?

Bondary conditions

- end of life –blanket (
 maximum decay heat)
- all emergency colling not available
- no manual plant operating measures

Results for HCPB Blanket

- Temperatures below structural degradation limit of Plasma facing components
 integrity ensured
- Protection goals: Cooling and confinement matched !!!!

ITER – THE NEXT STEP

ITER TBMs

- Test of blanket systems in ITER Test Blanket Programme.
- ITER offers 6 positions for the testing of blanket concepts as Test Blanket Modules (TBM).
- 2 EU concepts (HCPB and HCLL) selected for testing.
- Each TBMs has a volume of about 0.8 m³ with ~1 m² of first wall surface.

Location of TBM inside equatorial Port Plugs of ITER.

European breeder blanket concepts @ ITER						
	HCPB He-Cooled Pebble Bed	HCLL He-Cooled lithium Lead	Karlsruher Institut für Technologie			
Structural material	Ferritic-Martensitic steel (EUROFER)	Ferritic-Martensitic steel (EUROFER)	t t t t t t t t t t t t t t t t t t t			
Coolant	Helium (8 MPa, 300/500°C)	Helium (8 MPa, 300/500°C)	cold shield			
Tritium breeder, multiplier	Solid (pebbles bed) Li ₂ TiO ₃ /Li ₄ SiO ₄ , Be	Liquid (liquid metal) Pb-15.7at.%Li	(permanent) h divertor plates lower ports (divertor)			
	⁶ Li enrich. 40-70%	⁶ Li enrich. 90%	Broodor			
Tritium extraction	He purge gas (~1 bar)	Slowly re-circulating PbLi; extraction outside the blanket	blanket bor (top cap and breeder units not displayed) units not displayed			
 Main objectives principal functionality T- Breeding Interface approval (CPS, TES, remote procedures,) 			porting of the separator plane of the separat			
44 July 201	4 Stieglitz, Boccaccini,Hesch		Institute for Neutron Physics and Reactor Technology			
			ΔΔ			

- Key system for safety/reliability of TBS.
- Key components & operation
 - Helium compressor: stage centrifugal turbo
 - driven by asynchronous motor (magnetic bearings).
 - All the rotating parts in helium (canned)
 - low temperature operation $T_{max,He} \approx 50^{\circ}$ C

Summary - Blankets

- Breeding Blanket =Key component of fusion power plant
- Key functions
 - 1. Tritium production to serve Tritium self-sufficiency
 - 2. Heat removal to allow for electricity production
 - 3. Shielding contribution to match integrity of magnets and safety .
- Functionality
 - 1. T- Production: Li as breeder ⁶Li-enriched dependent on concept, additional multipliers
 - 2. Cooling: by liquid metals (causing MHD-effects), He (high p) or hybrides of both
 - 3. Dependent on coolant choice , dedicated material choice → respecting safety <u>and</u> low activation (waste reduction) aspects.
- Interface-compatibility
 - Power conversion system (PCS) = operational temperature frame
 - Tritium plant
 Coolant dependent system installations/requirements
 - Remote handled replacement, Transfer decommissioning
- Plant integration challenging puzzle to be learned within ITER
- Most credible currently developed blanket options Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL)
- ITER-Program with 6 test blanket modules (TBM) essential for a DEMO
 Blanket Design is one of the "CROWN" challenges in Eusien

Blanket Design is one of the "CROWN" challenges in Fusion Engineering

ADDITIONAL TRANSPARENCIES

HCPB/HCLL First Wall Neutron Spectra

^{\$}NR

