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Fusion Reactor – Thermo-nuclear core -ITER

plasma chamber
(ITER ~880m3)

vacuum
vessel

divertor

coolant manifolds
& distributors

shielding & 
breeder blankets

© ITER,2013

Top level blanket functions
Tritium breeding
heat removal
contribution nuclear shielding
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Blanket - Fundamental function- „Breeding“
How to breed Tritium ? 

Fusion – reaction

Deuteron

Tritium

He-nucleus () (3.5MeV)
(magnetic confinement !!)

 plasma „self-heating“
 heat radiation to blanket

highly excited
intermediate core

neutron (14.1MeV)
(unaffected by B-confinement)

 fuel generation „breeding“
 nuclear heating
 material activation

2D + 3T 4He ()+ n + 17.6 MeV

n



Capture neutron in nuclear reaction producing tritium
(n,t)-reaction on (suitable) naturally abundant nuclide
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Neutron interaction with matter 
Several interactions possible

Crucial parameter: nuclear cross-section  (measured in barn=10-24cm2)
 dependent on incident neutron Energy (E) and angle () 

elastic scattering inelastic
scattering

absorbtionparticle emission: 

(n,2n), (n,), etc
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Blanket - Fundamental function- „Breeding“
Which nuclide / element / material ?

(other potential reactions 3He(n,p)T + 0.8 MeV, 2H(n,)T+6.3 MeV)

6Li + n = T + 4He + 4.8 MeV or 6 Li(n,) T   + 4.8 MeV
7Li + n = T + 4He + n - 2.5 MeV or 7Li(n,n’)T  - 2.5 MeV

Which configuration ?
Breeder arrangement in Blanket
around plasma chamber so that 
neutron absorbed in breeder
Reactor constraints

Plasma chamber (80% for Blanket -coolant, 
structure material- 20% divertor & plasma heating
devices)
Parasitic neutron absorptions (non breeding materials)
Neutron leakage (ports, diagnostics)

 Need for neutron multiplication
How to prove tritium breeding capability?

neutronic calculation (  method/data/geometry !)
calculation validation against experiment(s)
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Blanket - Fundamental function- „Breeding“

Suitable Lithium-isotopes ?
6Li- high cross-section for low energies
(loss of neutron)
7Li –activation energy threshold >6MeV
Natural composition:  92.5% 7Li , rest 6Li.

 local 6Li enrichment mandatory

Which form of Li-adequate ?  
Requirements neutronic

High density, negligible absorption
Engineers

chemical, mechanical, thermal stability, good tritium release behaviour, compatibility 
with structural material and coolant, irradiation behaviour
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_ _ _ _ 7Li(n,n‘)T

Mass density [g/cm3] Li number density [1022cm-3]
Li4SiO4 (solid) 2.39 4.8
Li2TiO3 (solid) 3.43 3.63

Pb-Li (eutectic, liquid) 9.54 (500K) 0.517
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Blanket - Fundamental function- „Breeding“
Production of Tritium  from Li ?

reactor requires

(Tritium self-sufficency criterion)
Constraints

only neutron per fusion reaction
plasma chamber not solely covered
by blankets
structure & functional materials
„eat“ (absorb) precious neutrons
some neutrons escape (leakage)

 neutron multipliers are required

1
 plasmain  secondper  produced neutronsfusion  ofnumber 

blanketin  secondper  produced  tritonsofnumber TBR 

7Li

En=14 Mev

T
6Li

6Li
T

T

coolant
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Blanket - Fundamental function- „Breeding“
Neutron multiplication ?
Required (n,2n) reactions
with high  in 
Energy range up to 14MeV

Beryllium (Be)
low E for (n,2n) 
good moderator (shielding)
small world ressources
Be dust toxic

Lead (Pb)
simultaneous use as coolant
high availability, low cost
corrosion with material
weight
activation through Po formation

RESULT   2 technical blanket options
Homogeneous - liquid multiplier Pb mixed with Li as eutectic(acting also as coolant !) 
Heterogeneous- solid multiplier and solid breeder
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Blanket - Fundamental function- „Cooling“
Power flow in a DEMO

Fusion Power  Pfus=3GW
External heating and
current drive
PH&CD= 50MW(200MW) 



neutron heating Pn

Power loads for PFC
(PFC=Plasma-facing components)

Pn =2.4 GW  
Prad=500MW
Ppart=150MW

Pfus

PH&CD

core heat radiation Prad

SOL=„Scrape off layer“

DEMO with R=9m
Blanket Area A=1000m2

qn =2.4 MW/m2  (mean)
2.9 MW/m2  (max.)

qrad=0.5MW/m2  (mean)
Divertor

qpart=10-(20)MW/m2

R=9m
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~2%.Pfus     Blanket

Blanket - Fundamental function- „Cooling“
Power flow distribution

 (he-ash) 
3.5MeV
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Divertor
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~72%.Pfus Blanket
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Blanket - Fundamental function- „Cooling“
Volumetric heating by Pn - What is behind that ?

Interaction of different nuclei with matter scoping all reactions
elastic and inelastic scattering,
absorption,
particle emission

and associated -ray emission) 

Essential  =N . 

=macroscopic nuclear cross-section [1/cm]
=microscopic nuclear cross-section [1/cm]
N=number nuclei [1/cm3]

I0

I0/e

 

x



structure coolantmultiplier breeder

reaction
volume

flux n
[1/(cm2.s)]

Lambert-Beer-Attenuation law

x=-1= mean free path
(av. travelling distance before collision)
  dx =   collision probability of neutron

within dx

x
x eII  0
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Blanket - Fundamental function- „Cooling“
Given Fusion reaction Pfus  n  volumetric heat release
n [1/(cm2.s)]
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Magnitude Example:
FW neutron wall load qn2.9 MW/m2  qn,max  25      MW/m3

assuming FW wall thickness t=5 mm  qn,max  0.125 MW/m2

FW neutron wall load qn2.9 MW/m2 : 
assuming blanket radial built of 1m  qn,max  2.9     MW/m3

][MW/m25.0 radq

<100MW/m3 LWR
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Blanket - Fundamental function- „Cooling“
Wall surface heat flux caused by qrad

Requirement: Tmat<Tmax,material

Where ?  Outer side of first wall (FW) To

Parameters 
Tf = bulk fluid temperature
To = outer temperature FW
Ti = inner temperature FW
t = wall thickness
 = heat conductivity
k = heat transfer coefficient

q
rad =0.5M

W
/m

2
Tf Ti To

t

Example *
Tf = 300°C
t   = 5mm
 = 20W/(mK)
k = 8.0000 W/(m2K)
(vHe=80m/s, vPbLi0.5m/s)

v 
k

qTT rad
fi 


tqTT rad
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almost
upper steel

temp. !!!* Boccaccini, 2012, lecture
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Blanket - Operational functions- „Structures“
Thermal and other loads cause additional material loads !!! 
Requirement: max<Design Where ?  Everywhere, to be demonstrated

max = max. stress in Blanket
Design= max allowable material stress (material data base!!) 

Example*
 =1.8.10-5 1/(K)
E = 1.8.1011 Pa
 = 0.3, t = 5mm
(To-Ti) = 125°C
qrad=0.5MW/m2

q
rad =0.5M

W
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2

Ti To

t
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Thermal loads on FW –plate
 = thermal exp. coefficient
E  = modulus of elasticity
 = Poisson ratio

Several stress types present
primary stresses = pressure, mech.loads (bend, torque,….)
secondary stresses = thermal loads
alternating stresses = cyclic loads

MPath 290max, 
* Boccaccini, 2012, lecture
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Blanket - Operational functions- „Structures“
Design demonstration according to material data base *

d = design stress 
 m = stress mises
 UTS=ultimate tensile strength
 t   = fatigue strength
 cr = creep strengh

* Tavassoli et al., J. Nuc. Mat. 329-333 (2004), 257

Stress criteria for elastic deformation**
Primary stresses=equilibrium of forces & moments

pressure, membrane,bending body forces
 not self-limiting
 form factor f load type dependent

Secondary stress = strain-controlled (lot load contr.)
thermal loads, joints

 self-limiting
 experience factors data base related

Practical example
primary stresses from internal pressure (f =1)+ bending (f=1.5) pressure

total stress  tot(                            )

trom data sheet m=132MPa (T=773°K) 

** US Nuc. Reg. Com. regulatory guide ,2012

mprim f  

mtot   3sec  primtot

MPatot 396
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Interface-functions
coolant temp. to operate efficiently Power Conversion System 
(PCS)
measure to extract tritium from coolant/breeder
ISI&R and maintenance/extraction

Mainly two blanket lines existent
Liquid Metal Blanket

Lithium metal (with or without 6Li-enrichment)
Pb-Li eutectic alloy (high 6Li-enrichment required)
self-cooled/cooled by He or water (or combination)
large blanket thickness ( 60 – 80 cm)

 Helium Cooled Lithium Lead (HCLL)
Solid breeder blanket with neutron multiplier
Beryllium neutron multiplier
beramic breeder materials: Li4SiO4, Li2TiO3 , Li2O
only small blanket thickness needed (30–50 cm)
Be/breeder configuration subject to optimisation

 Helium Cooled Pebble Bed (HCPB) blanket

Blanket – Basic functions- „Interfaces“

© HCLL, G.Rampal, 2008

© F. Cismondi, 2008
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Blanket – Basic functions- „InterfacePCS“

Requirement: sufficient PCS coolant temperature for high efficiency th

PCS Types
Joule-Brayton (Gas turbine cycle) 
Clausius-Rankine (steam turbine)

Joule-Brayton -Process
use of inert He
demand for high th temperatures >700°C

 high material challenges
 high pumping power 8-10%. Pfus

For efficiencies th >40% staggered heating
required to maintain in acceptable stress and
performance limits of components

Stage 1 300-480°C    
Stage 2 480-620°C
Stage 3 480-700°C
Stage 4 700-800°C

1432MW Blanket (He)
335MW Divertor

1976MW Blanket (PbLi)
248MW Divertor

HCLL Blanket, DEMO
*G. DuBois, Belgatom 2002
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Blanket – Basic functions- „InterfacePCS“

Clausius- Rankine Process
lower mean average temperature
but multi-stage required
operation threshold higher than advanced PWR

Pfus DEMO* 4050 MW
Pel,n 1500 MW
Plant efficiency, 
Pel,net / Pfus

37 %

Ppumps 400 MW

th 42 %

* Boccaccini, 2012, lecture



19 July 2014   | Stieglitz, Boccaccini,Hesch Institute for Neutron Physics and Reactor Technology

planned

Blanket – Basic functions- Interfacetritium plant“

Blanket= central tritium source for reactor fuel cycle

Vacuum
Pumps

n

Blanket
Tritium 

Extraction
System Fuel 

plant

Fuel 
storage

Fuel 
injection
system

Coolant
Purification

System

T
D
He

Required for DEMO 
(1GWel)-self-sustainability

T  =380-410 g/day
D = 270g/day

Radiation protection
T =270mg/day

losses to environment
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Blanket - Basic functions- „Interfacetritium plant“
Tritium management = coolant dependent *

Potential coolants
Water
Helium
Liquid metal (PbLi, Li)
Molten salt (FLiBe) 

 All pase engineering challenges (R&D)
Self-cooled-Blanket (ARIES-AT)
(homogeneous blanket)

PC
S

structure
material

SiC/SiCf

coolant PbLi
multiplier Pb
breeder Li
T-extraction PbLi

pl
as

m
a

PCS = Power conversion System 
CC   = Coolant Chemistry Control
TES = Tritium Extraction System 



21 July 2014   | Stieglitz, Boccaccini,Hesch Institute for Neutron Physics and Reactor Technology

Blanket - Basic functions- „Interfacetritium plant“
Helium Cooled Pebble Bed Blanket (HCPB)
(heterogeneous blanket)

structure
material

EUROFER

coolant He
multiplier Be
breeder Li2SiO4,

Li2TiO3

T-extraction He

PCS = Power conversion System 
CC   = Coolant Chemistry Control
TES = Tritium Extraction System
CPS = Coolant Purification System 

PC
Spl

as
m

a

 T-transfer by coolant or purge fluid
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Blanket - Basic functions- „Transfer fluid“
Optimal coolant ?

PbLi /Li Helium Water Salt (FLiBe) Criteria

++
+ (if elec. 
Insulation)

- -

+
-

++ 

++
- -

-

0
0

-

Coolant capacity
 T (heat transfer)
 pressure

 Magnetohydrodynamics
0 ++ -- 0 Coolant chemistry

++
++

- -
- -

+
0

+
++

Balance of Plant
 pumping power
 thermal inertia

+(PbLi)/- (Li) 
+(PbLi)/- (Li)

++
0

- -
-

Tritium 
 breeding /T-Inventory
 extraction

- -
+

++
-

-
-

- -
0

struct. material compatibility
 corrosion
 erosion

-- (PbLi)/ -Li
- -

0

++
++
++

0
-
-

0
-

- -

safety & decomissioning
 activation (incl. T-inventory)
 chem. interaction (H2O,O2)
 decommissioning
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Blanket – Basic design - „Structures“
Fundamental design – HCPB blanket

coolant/breeder/multiplier arrangement
in structural material,
which can be mounted/disassembled
at given nominal boundary and
sustaining design extension conditions
and finally reasonable reliable
fabricated

Be-multiplier
 Pebble bed 64% packing factor
 d=1mm 

He 

Ceramics breeder
 Pebble bed 64% packing factor
 d=0.2-06mm 
 6Li-enriched (40-70%)

Design aspects
modular breeder units mass fabrication
robust simple modules pressure resistant
central feeder /collector units
reduced replacements efforts HCPB
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Blanket – Basic design - „Verification“
Now computations may start

Thermal-hydraulics
Thermo-mechanics
Transient behavior

Example HCPB  blanket

sec  primtot

improved FW-Cooling
structuring of coolant ducts

k ≈ 7150 W/m²K
temperature distributionstress  distribution

* Ilic,2011

* Ilic,2010

* Cismondi ,2012

HCPB
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Blanket – Basic design - „Verification“
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Temperature transients in TBM (ANSYS 
Calculations), Boccaccini, 2012

Transients
ITER typical scenario

HCPB
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Blanket – Basic design - „Fabrication “
How to fabricate modules ? 

First wall 
coolant ducts, 
breeder units and
multiplier pebble beds

Example HCPB  blanket

First wall coolant ducts
prefabricated
hot isostatic presses and
bend

© Rey, 2012, half plate FW

© Full scale FW- mock-up

Alternative route FW coolant ducts
prefabricated hipped sandwich
square channel 
EB to seal

© Rieth, Dafferner, 2011

HCPB
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Blanket – Basic design - „Fabrication “

Breeder units
simple parts
automatized fabrication and joining
processes   
industrially available 
qualification procedures 

HCPB
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Breeder particle beds and multiplier
breeder production by melt spraying

Pebble bed characterization
packing factor  damage  life-time&rad. damage models

Beryllium pebbles 
successful fabrication 
of Be12Ti
grain size characterization&
process optimization

Blanket – basic design - „Fabrication“

10 mm

Be12Ti

Kolb et al. , 2011

GS~10-30 µm GS~30-60 µm

HCPB
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Blanket –Design - „Validation“
Blanket hydraulics

manifold/distributor (GRICAMAN )
Heat transfer of the first wall 
cooling: HETRA experiment

Flow distribution of TBM manifold 
system simulated and verified against 
experiment in 1:1 fabricated mock-ups

Heat transfer in  first wall channel  tested in 
80bar helium loop at 270kW/m². CFD 

models validated against experiments.

HCPB
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Blanket –Design - „Validation“ HCPB

TBM FW experiments
30m³ vacuum chamber
IR radiation heaters ( W/m²) 

1:1 TBM exp., divertor exp. (10-20MW/m²) 
30m³ vacuum chamber
electron Beam Gun 800kW

He- infrastructures to allow for prototypical scale testing
HELOKA-HP (KIT, figures below), p=10MPa, m=2.4kg/s, T500°C
HEFUS(ENEA)  p=8MPa, m=0.35kg/s, T530°C
KATHELO (KIT), p=10MPa, m=0.25kg/s, T850°C  
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Blanket – Basic design - „Structures“
Fundamental design – HCLL blanket

simple coolant/breeder/multiplier set-up
homogenously mixed

Challenges
Interaction of magnetic field with moving
liquid  magnetohydrodynamics (MHD)
Corrosion of structures by lead
Low soluability of Tritium in PbLi

Design aspects (similar as HCPB)
modular breeder units mass fabrication
robust simple modules pressure resistant
central feeder /collector units
reduced replacements efforts HCLL

PbLi
inlet

Horizontal 
stiffening 

plate

Breeding 
zone cell

Breeding 
zone

PbLi
distributior

PbLi
outlet

He

modular 
breeder

units
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Blanket – Basic design - „Verification“ HCLL
Magnetohydrdynamics MHD 

Motion v of LM in B-field induces
electric field E
E drives electric current j
j x B induces Lorentz Force FL
FL opposing fluid motion

Hartmann - number

forces viscous
forcesnetic electromag



LBHa

fusion application Ha~ O(10)4

 flow dominated by MHD-effects

Other impacts caused by MHD
increased p dependent on 
wall conductance ratio c

Multi-channel effects by electric currents
entering neighboring ducts  p 

 electrical separation and/or low v mandatory

L

10
-1

10
1

10
3

10
5Ha

10 0

10 2

10 4

K
Fusion

HaK ~
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1
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
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Blanket – Basic design - „Verification“ HCLL
Magnetohydrdynamics MHD 

strange velocity profiles dependent
on wall conductivity c

Example Ha=50
 MHD adapted flow arrangement

required to ensure TH-integrity

MHD -experiments
Flow velocity depicts as electric
potential  on walls

Multi-channel effects reduced by counter-
current flow

* Bühler,2012

c=0 c= at 
y=1

tor
rad pol


A-A

B

SP SP SP

x

xB 



1v

* Bühler,2011
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Blanket – Basic design - „Verification“
liquid metal corrosion of
steels due to dissolution
attack of alloy constituents.

HCLL

Example: RAFM-steel in flowing PbLi
Corrosion rates velocity dependent,
vary between 250 and 400 µm/year.

*Konys, J. Nuc. Mater., 417 (2011) 1191.

Protective coatings with aim
corrosion reduction
Tritium permeation barrier
reduction of electric current densities
.Example: pluse-plating of Al on RAFM-steel

electrodeposition process 
Subsequent heat treatment 

Pulse 
plating

DC
current

AlAl

Micro structure after heat treatment

Resin

-FeAl

EUROFER steel

Thin Al2O3 layer





W. Krauss, 
J. Nuc. Mat., 417, 
1233 (2011)
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Blanket – Final design - „Integration“
Requirements for a FPP 

Life-time 40-60years 
Reliability >80%

+ decommisioning, repository, …
Limiting component factors:

Plasma facing components
accumulated dose
fatigue, creep,….. 

Blanket
mat. damage 100-150dpa
400appm/y He in mat
activation limits

 remote handling, transfer
 life-time 3-5years
Divertor

mat. damage 15-30dpa
fatigue 10-20MW/m2

 remote extraction
 life-time 1.5-2.5years
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Blanket – Final design - „Integration“
ITER configuration

water-cooled main structure
6 test blankets @ three ports

Large sector concept
horizontal access
horizonatal
seeming

Multi-Module-Segment (MMS)
rail based maintenance
vertical module access

ARIES, US-study

*Magnani, 
2010
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Blanket – Final design - „Integration“
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Plant  – Final design - „Safety- Licensing“
ALARA principle (As Low As Reasonable Achievable) for

normal and off-normal events ( low event frequency)
design robustness and material choice (activation, self-limiting design)
maintenance, reprocessing and disposal

Safety demonstration (sequential nature)

safety
objectives

DDD 
(design description

document)

• Confinement
(Prevention off-
site emergency
responses)

• Rad. Protection
(Mitigation of
dose  limits
otuside facility)

Functional safety
basis

• confinement, 
• fusion power shutdown, 
• decay heat removal, 
• monitoring, and 
• control of physical and 

chemical energies

System analysis
•Accident analysis

BoP
• Performance

Postulation of PIE

Defintion
of safety
functions

Safety
Demonstration  Defense in Depth

(DiD- Barrier concept)

barrier
defintion

Top level basic design design verification validation, 
licensing
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Blanket – Final design - „Integration“
Long term irradiation
(12.5 MWa/m2) of a 
DEMO reactor first wall
*Fischer, 2012

Design safety - 1st step material
activation
remote handling
decomissioning, post-processing
…
RAFM  8-10%CrWTaV steels
reference fast decaying Fe- alloys
„Low level waste“ after 80-900y
Reduced amount of HLW
Impurities Nb, Mo dominate grey
domain

 Material irradation data base @ fusion
specific spectrum still „sparse“

 IFMIF (Int. Fusion Material Irradiation 
Facility) mandatory
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Operational Safety
postulated initiating event (PIE)  event tracking (FFMEA-analysis) 

consequences  deterministic approach
statistical safety assessement  likelyhood of event occurence

Blanket – Final design - „Integration“

Pre-requisite 
validated codes to predict loads

Example : EM analyses of Blankets
 Ferromagnetic materials during 

a plasma disruption.
 Coupling of EM-analysis to structural 

analysis.

Tesla

0.1

4.7

9.3

13.9

MA/m
2

0.0

7.4

14.8

22.2

Eddy currents
distributionB distribution
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Operational Safety- postulated initiating event (PIE)
What happen in case of full station black-out ?

Bondary conditions
end of life –blanket ( maximum decay heat) 
all emergency colling not available
no manual plant operating measures

Results for HCPB Blanket
Temperatures below structural
degradation limit of Plasma facing
components  integrity ensured

 Protection goals: Cooling and
confinement matched !!!!

Blanket – Final design - „Integration“

*Maisonnier, 2005, PPC –Study, EFDA
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ITER – THE NEXT STEP
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Test of blanket systems in ITER
Test Blanket Programme.

ITER offers 6 positions for the
testing of blanket concepts as
Test Blanket Modules (TBM).

2 EU concepts (HCPB and HCLL)
selected for testing.

Each TBMs has a volume of about
0.8 m3 with ~1 m2 of first wall
surface.

ITER TBMs 

Location of TBM inside equatorial
Port Plugs of ITER.

TBM
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44

European breeder blanket concepts @ ITER
HCPB

He-Cooled Pebble Bed
HCLL

He-Cooled lithium Lead

Structural 
material

Ferritic-Martensitic
steel (EUROFER)

Ferritic-Martensitic
steel (EUROFER)

Coolant Helium
(8 MPa, 300/500C)

Helium
(8 MPa, 300/500C)

Tritium 
breeder, 
multiplier

Solid (pebbles bed)
Li2TiO3/Li4SiO4, Be

6Li enrich. 40-70%

Liquid (liquid metal)
Pb-15.7at.%Li

6Li enrich. 90%

Tritium 
extraction

He purge gas
(~1 bar)

Slowly re-circulating 
PbLi; extraction 
outside the blanket

Breeder
Blankets
modules

Main objectives
principal functionality
T- Breeding
Interface approval (CPS, TES, remote 
procedures, ………)
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EU Test Blanket Modules

HCLL TBM

HCPB TBM

L.V. Boccaccini, et al., Fus. Engng. Des., 2011, p.478.
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EU TBS design & integration 

Auxiliary Equipment 
Unit

TBM Set

Pipe Forest

Interface IF2a

Interface IF2b
Interface IF3

TBS=Test blanket station
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Helium Cooling Systems

Both HCLL and HCPB HCS are
arranged in the CVCS area (in a
reserved space of about 222 m2).

Key system for safety/reliability of TBS.
 Key function: cooling of FW

 surface (0.8 m2) , q n 0.78 MW/m2, qrad 0.5 MW/m2.
Key system for safety/reliability of TBS.
 Key components & operation

 Helium compressor: stage centrifugal turbo
 driven by asynchronous motor (magnetic bearings).
 All the rotating parts in helium (canned)
 low temperature operation Tmax,He 50°C

LEVEL 2

Aiello, Fus. Engng. Des.,2011, 602.
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Summary - Blankets
 Breeding Blanket =Key component of fusion power plant
 Key functions

1. Tritium production to serve Tritium self-sufficiency
2. Heat removal to allow for electricity production
3. Shielding contribution to match integrity of magnets and safety .

 Functionality
1. T- Production: Li as breeder 6Li-enriched dependent on concept, additional multipliers
2. Cooling: by liquid metals (causing MHD-effects), He (high p) or hybrides of both
3. Dependent on coolant choice , dedicated material choice respecting safety and low

activation (waste reduction) aspects.
 Interface-compatibility
 Power conversion system (PCS)  operational temperature frame
 Tritium plant  coolant dependent system installations/requirements
 Remote handled replacement, Transfer decommissioning

 Plant integration - challenging puzzle to be learned within ITER
 Most credible currently developed blanket options Helium Cooled Pebble

Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL)
 ITER-Program with 6 test blanket modules (TBM) essential for a DEMO

Blanket Design is one of the “CROWN” challenges in Fusion 
Engineering
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ADDITIONAL 
TRANSPARENCIES
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Neutron flux spectra: fusion vs. fission
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HCPB/HCLL First Wall Neutron Spectra
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Tritium T (3H):   ~ 0.41 kg/day ~ 150 kg/fpy

Deuterium D (2H) : ~ 0.27 kg/day ~  100 kg/fpy

fpy = full power year

Tritium CONSUMPTION of a 
2700 MW Fusion, ~1000 MW electrical Power Plant :

3.) Tritium mass flow = 3 * mass of proton (neutron) * frequency =
3 * 1.67*10-27 kg * 9.57*1020 * 24 * 60 * 60 * 1/day                     = 0.41kg/day

1.) Energy per fused tritium atom  (17.6 MeV in Joule):
17.6*106 * 1.602*10-19 = 2.82*10-12 Joule;

2.) Fusion frequency = P/E = 2700*106 J/s / 2.82*10-12 J = 9.57 1020 1/s; 

Note: 1eV = 1.602 10-19 As*V = 1.602 10-19 Joule

charge


