LUCC Land Use and Climate Change Interactions in Central Vietnam

BMBF-LUCCi climate simulations and potential applications for agriculture

Lower Mekong River Basin (LMRB) & Vu Ghia Thu Bon (VGTB)

Dr. Patrick Laux and colleagues

Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research, Department of Atmospheric Environmental Research (IMK-IFU)

Motivation: Climate simulations SE Asia

- Sparse observation network of hydrometeorological data
 - Few hydrometeorological stations (located in lowlands)
- Stakeholders demand scientific sound CC adaptation strategies
 - Flood protection measures (adaptation of infrastructure)
 - Future hydropower potential (low flows)
 - Agricultural applications (e.g. irrigation strategies)

→ High-resolution meteorological data (past and future) required for CC impact modelers (e.g. agric., hydrol.)

Method: Regional climate projections

Population Growth, Economic Development & CO₂ concentrations **Technological Progress** 1300 Scenarios 1200 A1B (ju 1100 dd 1000 --- A1F **B**1 - B2 concentration IS92a 900 800 **Emission Scenarios** 700 600 ဂ္ဂ Greenhouse Gas Concentrations 500 400 300 2000 2020 2040 2060 2080 2100 Year **Global Climate Models** P, T, RH, u, v ... **Global Climate Scenarios Downscaling Methods RCMs** GCMs Δx ≈ 50...10km **Atmosphere & Regional Climate Scenarios** Ocean Δx ≈ 300…100km ΟΝΑ

LUCC

Downscaling setup for 2 case studies

Domain 1

 horizontal: 99 x 99 grid points with a resolution of **45 km**

LUCC

- vertical: 50 layers up to 50 hPa
- time step: 180 s

Domain 2: Case study of LMRB

- horizontal: 142 x 145 grid points with a resolution of **15 km**
- vertical: 50 layers up to 50 hPa
- time step: 120 s

Domain 3: Case study of VGTB

- horizontal: 66 x 75 grid points with a resolution of **5 km**
- vertical: 50 layers up to 5000 Pa
- time step: 30 s

LMRB: Detected trends

→ Temperature increased up to 1.2 °C (1971-2000)
 → Rainfall increased for most locations; LMRB: ~ 450 mm (1971-2000)

ΟΝΑ

LMRB: Expected rainfall change

A1b

B1

Federal Mi of Educatio and Resea

LMRB: Reliability of simulations

DEM as used in WRF

LUCC

 \rightarrow Model performs good on average (+/- 2 mm)

 \rightarrow Highly elevated areas: WRF bias or interpolation error of observations?

VGTB: Expected rainfall change

VGTB: Expected temperature change

ONA

VGTB: Reliability & Performance

12

12

D2 @ 15 km D3 @ 5 km 500 800 Mean percipitation of 23 gauges Mean percipitation of 23 gauges Rainfall [mm] 400 Rainfall [mm] 600 Mean precipitation of D3 (23 corresp. grid cells)) Mean precipitation of D2 (all grid cells)) 300 400 200 200 100 Significant performance gain achieved 0 ^L 10 by dynamical downscaling! 300 200 Deviation [%] Deviation [%] 50 00 0 -50 ____0 -100 0 2 6 8 10 12 2 4 6 8 10 Month Month

→ D2: Seasonality not well captured, high deviations from observations
 → D3: Improved seasonality, acceptable deviations

Potential applications of climate data

[:]ONA

Tailor-made agricultural products

Agricultural risk maps to reduce soll erosion and crop failure in future (long-¹⁵term planning strategies)

 14.8
 107.2
 107.4
 107.6
 107.8
 108
 108.2
 108.4
 108.6
 108.8

Expected changes in number of heavy rainfall events (precip > 20 mm) during 2001-2030 (A1b)

Capacity building

Supervision PhD's:

- **Nguyen Phuong** (LUCCi): Impacts of land use change on meteorological surface variables using dynamic land use information in the climate simulations
- **Dang Thinh** (DAAD): Identification of **optimized cultivation strategies** (rice, cash crop) and **sustainable water management strategies** in the VGTB river basin using coupled WaSim Gams simulations

Courses / Lectures planned in 2014/2015:

- dynamical downscaling,
- climate change impact analysis,
- risk mapping,
- climate-smart agricultural

Towards climate-smart agriculture

LUCC

Goal: Improving existing cropping calendars

Source: Ministry of Agriculture & Rural Development (MARD), Vietnam 2010

Lessons learnt from other projects (WASCAL)

New approach (Waongo et al., 2014) minus traditional approach (Diallo et al., 2008)

Waongo, M, Laux, P., Traore, S., Sanon, M., Kunstmann, H. (2014): A Crop Model and Fuzzy Rule Based Approach for Optimizing Maize Planting Dates in Burkina Faso, West Africa. Journal of Applied Meteorology and Climatology, 53:598-613.

Lessons learnt from other projects (WASCAL)

WRF ensemble downscaling of seasonal forecasts CFSv2 for Volta basin: Rainfall amount March - August (2013)

Siegmung, J., Laux, P., Bliefernicht, J., Kunstmann, H.: Seasonal Precipitation Prediction for West Africa: Evaluation and Dynamical Downscaling of CFS2's Global Seasonal Predictions (in prep.)

Summary & Recommendations

• Long-term climate simulations are performed and provided: Reliable in general, validation for highlands not possible

 \rightarrow Investment in measurements

• Specific **tailor-made information** (e.g. agricultural risk maps) can be developed **in cooperation with local researchers**

 \rightarrow Supporting collaborations/projects

• Existing **seasonal climate predictions** are not useful to give scientifically sound agricultural recommendations (what to plant when, and where for the coming season?)

→ Investment in projects about improved seasonal climate products and coupled climate-agricultural modeling systems

• Knowledge from LUCCi and other projects and interested in **future collaborations** in Vietnam

→ Contact us (patrick.laux@kit.edu)

Further reading

Souvignet M, Laux P, Freer J, Cloke H, Thinh DQ, Thuc T, Cullmann J, Nauditt A, Flügel WA, Kunstmann H,

Laux P, Phan VT, Thuc T, Kunstmann H (2013) High Resolution Climate Change in Science and Engineering 13. Nagel W, Kröner D, Resch, M (eds.), Solution H (2012) Setting Un Regional Climate

Thuc T, Ribbe L, Kunstmann H (2012) Setting Up Regional Climate ast Asia. High Performance Computing in Science and Engineering 12. Nagel (eds.). Springer Berlin Heidelberg, 391–406. Laux P, Phan VT, Loren Simulations for You

