

Development of Electrochemical Processes for Aluminumbased Coatings for Fusion Applications

Juergen Konys

INSTITUTE FOR APPLIED MATERIALS – MATERIAL PROCESS TECHNOLOGY | CORROSION DEPARTEMENT

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Introduction - Location of KIT, Germany

KIT-locations in Germany

219th International Corrosion Congress | November 2-6, 2014 | Jeju Island, Korea Jürgen Konys

Advanced processes for tritium permeation and corrosion barriers

Applications for Nuclear Fusion

T-permeation and/or anti-corrosion barriers for liquid breeder blanket concepts in ITER and future Fusion Power Reactors

► Why **Al-based** barriers?

- Overview of previous coating activities \rightarrow Hot-dip-aluminization process
	- New electrochemical Al coating processes
		- Al deposition from organic aprotic electrolytes (ECA)
		- Al deposition from ionic liquids + metal salt (ECX)
- Conclusions

Nuclear Fusion as an long-term Option for the Worldwide Energy Demand

Worldwide energy demand is rising continuously

Development of a new primary energy source on the basis of a magnetically confined fusion plasma

- **Favorable environmental and safety properties**
- - Unit size 2 5 GW_{th} / 1 2 GW_e
	- **Size of present base load power plants**
- Potential fusion applications
	- **Base load for large cities**
	- **Energy intensive industries**
	- **-** High temperature process heat in a renewable economy

The He-PbLi blanket concept for ITER: Application of T-permeation and/or anti-corrosion barriers

- Deuterium (D) is highly available, e.g. in sea water
	- Tritium (T) is naturally "not really" available, but
	- produced in CANDU reactors by (n, γ) reaction on deuterium
	- **and bred by nuclear reactions from Lithium**

 6 Li (8%) + n \rightarrow T + He + 4.8 MeV \rightarrow enrichment is needed

 $7Li (92%) + n \rightarrow T + He - 2.87 MeV$

- Worldwide, many fusion reactor concepts are designed to use lithium in different chemical form
- as solid breeder (ceramic), e.g. $Li₄SiO₄$, Li₂O

as liquid metal, e.g. pure Li or Pb-15.7Li (Tm = 235°C)

Barriersare required!

Why do we need Tritium Permeation Barriers for "(European) Liquid Breeder Concepts"?

Safety and cost: Its to reduce the tritium release from the PbLi (where its formed) into the coolant significantly (water for WCLL and helium for HCLL blanket concept) \rightarrow limit for ITER 1gT/a

Investigated barrier systems

Structure and technical requirements for an Albased T-permeation and/or corrosion barrier

Requirements for a tritium permeation barrier

- **Reduction of T-permeation by a factor of <100 in Pb-15.7Li (1000 in gas phase)**
- Self-healing of (mechanically) damaged layer must be thermodynamically possible in Pb-15.7Li (re-oxidizing)
- Long-term corrosion resistant in Pb-15.7Li up to ca. 550°C
- High content of low activation elements
	- No negative influence on mechanical properties of the steel due to the coating process
	- The coating process must be of industrial relevance

Permeation data of different barriers on FM-steel

Permeation data of Al-coated FM-steels in H₂

919th International Corrosion Congress | November 2-6, 2014 | Jeju Island, Korea Jürgen Konys

Structure and technical requirements for an Albased T-permeation and/or corrosion barrier

Requirements for a tritium permeation barrier

- Reduction of T-permeation by a factor of <100 in Pb-15.7Li (1000 in gas phase)
	- **Self-healing of (mechanically) damaged layer must be thermodynamically possible in Pb-15.7Li (re-oxidizing)**
	- **Long-term corrosion resistant in Pb-15.7Li up to ca. 550°C**
- High content of low activation elements
	- No negative influence on mechanical properties of the steel due to the coating process
	- The coating process must be of industrial relevance

Thermodynamics of Al/Al₂O₃-based **T-permeation barriers**

Corrosion attack of bare EUROFER steel in Pb-15.7Li at 550°C as a function of flow velocity

1219th International Corrosion Congress | November 2-6, 2014 | Jeju Island, Korea Jürgen Konys

Structure and technical requirements for an Al-based T-permeation and/or corrosion barrier

Requirements for a tritium permeation barrier

- Reduction of T-permeation by a factor of <100 in Pb-15.7Li (1000 in gas phase)
- Self-healing of (mechanically) damaged layer must be thermodynamically possible in Pb-15.7Li (re-oxidizing)
- Long-term corrosion resistant in Pb-15.7Li up to ca. 550°C
- **High content of low activation elements**
- **No negative influence on mechanical properties of the steel due to the coating process**
- **The coating process must be of industrial relevance**

Activation of Al for Al-based barriers in a "fusion irradiation environment"

Aluminium irradiation for 2 years

Al-based coatings: The Fe-Al phase diagram to understand the complexity of intermetallics

Hot-Dip aluminizing process parameters for hot dipping are: T_{dip} = 700°C, dipping time of 30 s in Ar-5%H₂ atmosphere

Microstructure of hot dipped surface Microstructure after heat treatment

The alloyed surface layer consists of brittle Fe₂Al₅, covered by solidified Al

Heat treatment at 980°C / 0.5 h + 760°C / 1.5 h and an applied pressure of >250 bar (HIPing) reduces porosity and transforms the brittle Fe2Al5-phase into the more ductile phases FeAl and α-Fe(Al)

Electrochemistry for coating application

EC measurements of protic and aprotic metal deposition systems

Electrochemical deposition for barriers/coatings advantages of galvanic coatings -

Conductivity gradient

Conductivity gradient

stresses)

Electrochemical aluminium deposition

 properties of organic aprotic electrolyte systems -

1919th International Corrosion Congress | November 2-6, 2014 | Jeju Island, Korea Jürgen Konys

Development of electrochemical Al coating process, toluol-based (ECA)

Process specifics

Organic electrolyte, Al-alkyle, under cover gas Deposition temperature ca. 100 $^{\circ}$ C, rate \approx 12 μ /h More complex geometries can be coated; even inside tubes

Result of ECA development

- Electrochemical coating **applicable** to functional scales in TBM's
- Barrier function tested in corrosion, successfully
- **Salt-based processes have to be developed** for higher compositional flexibility
- Reason: Electro-negativity of refractory metals and unique behavior

Development of coatings as corrosion T-permeation barriers (ECX)

t = 1 h

t = 2 h

t = 0.5 h

Control of layer thickness

Development of electrochemical aluminum coating process based on ionic liquids (ECX)

Advantages of ECX process based on ionic liquids:

- **Improved flexibility compared to ECA**
- **Improved security (inflammable, not volatile) compared to ECA**
- **Deposition parameters are customizable to produce coatings with specific properties (thickness, deposition rate, morphology)**

Controllable layer thickness (compared to HDA)

2119th International Corrosion Congress | November 2-6, 2014 | Jeju Island, Korea Jürgen Konys

Electrochemistry of aluminum in ionic liquids

Heat treatment of Al layers for corrosion and T-permeation barriers (pure Al is not stable in PbLi) Treatment of Al coatings produced by ECX

- **Homogeneous conversion of Al coatings and formation of desired Fe-Al phases on 1.2210 steel**
- **No delamination visible**

Heat treatment of Al layers for corrosion and T-permeation barriers

50 60 70 80

Treatment of Al coatings produced by EDX process (Lewis acidic IL)

- distance / um **Heat treatment under Ar atmosphere (preventing of strong surface oxidation) + additional annealing step at 640°C (4h)**
- **Relatively smooth surface after heat treatment**
- **Layer thickness after heat treatment: approx. 50µm (center)**

Actual work:

- **Ongoing examination of deposition parameters:**
	- **Adhesion to the substrate, reproducibility, influence on coating properties**
	- **Influence of sample geometry**
- **Optimization of heat treatment parameters (depending on parameters during ECX process)**

Development of electrochemical aluminum coating

processes (corrosion tests in Pb-15.7Li for ECX process)

- **Barriers produced by ECX process:**
	- **Corrosion protection of Eurofer in flowing Pb-Li is shown for "short-term" exposure times up to 4.000h**
	- **Remaining protective scale thickness after 4000 h: >50 µm**
	- **Radial mass loss: ca. 10** μ **m** \rightarrow **corrosion rate ca. 20** μ **m/year**
	- **Homogeneous corrosion attack of the scale itself No formation of plateaus (!) visible as in the case scales produced by ECA process**

Conclusions

- **Barriers**, based on Fe-Al/Al₂O₃, are appropriate to fulfill the requirements for T-permeation reduction and corrosion protection in liquid PbLi.
- **Hot-dip aluminizing** is an excellent tool to investigate the formation of aluminide layers on FM-steels (interdiffusion). But HDA coatings have drawbacks because of the high Al content in the surface
	- ► high activation under neutron irradiation: **26Al** and the low flexibility for coating of complex-shaped parts.
- Electrochemical deposition processes like **ECX** have shown their applicability for manufacturing of thin Al coatings with **high reproducibility,** even for complex geometries.
- The development of appropriate **heat treatments** has to be further optimized, followed by new permeation tests in H-, D- and finally T- environments.
- The new electrochemical Al-based coatings have also a **high potential in other energy applications** at elevated temperatures and aggressive environments.