

The evolution of ferritic ODS alloys at KIT

From laboratory size to large scale batches Microstructure, mechanical characterization and nanostructure

Jan Hoffmann

Institute for Applied Materials (IAM-AWP)

Large lab scale production Challenges – Powder handling

Filling

Larger scale

- Capsule design was adapted to feature 2 nozzles
- Upgraded glove box for handling of larger powder quantities
- Sealing process was optimized

Sealing / Welding

Large lab scale production Challenges – compacted capsules

Lab scale

- ~ 500 g powder
- max. load 250 MPa

large (lab) scale

- Ø 2 m
- max. load 200 Mpa

Institute for Applied Materials (IAM-AWP)

Powder after MA - particle sizes

difference in size, but no difference in shape

Powder after MA - impurities

Size fraction	< 90 μm		> 90 µm	
element	average value	SD	average value	SD
В	< 0,005	-	< 0,005	-
С	0.0216	0.0004	0.0214	0.0001
N	0.0098	0.0004	0.0101	0.0001
0	0.087	0.002	0.081	0.001
Ti	0.152	0.0001	0.151	0.0002
Cr	13.1	0.01	13.1	0.01
Со	0.0071	0.0001	0.0072	0.0000
Ni	0.0876	0.0009	0.0894	0.0005
Cu	0.0118	0.0001	0.0118	0.0001
Y	0.199	0.02500	0.217	0.00040
Мо	0.0029	0.00010	0.0030	0.00010
W	1.13	0.002	1.11	0.003
S	14.8189		14.8119	

As-milled

no significant difference in chemical composition and impurities

Large lab scale production Hot rolling

Before rolling

Heating of the capsules up to 1100°C

Large lab scale production Hot rolling

Large lab scale production Hot rolling

After rolling

- Final dimensions
 - 600 mm length
 - ~8 mm thickness
- Capsule material still needs to be taken off!
- Fabrication of specimens for mechanical tests

Large lab scale production – Charpy impact

Institute for Applied Materials (IAM-AWP)

Institute for Applied Materials (IAM-AWP)

Characterziation (as-hipped) TEM-HAADF

As-hipped state

- HAADF images illustrate the grain structure
- grain sizes slighlty larger in "R" material

in focus

As-hipped state

- BF images show nano-clusters inside the microstructure
- size approx. 10-15 nm

- EBSD Map
 - 50 by 100 µm size
 - 50 nm step-size
 - ~ 2.3 million points
- Maps looks misindexed, but > 99.999% of points are indexed

- EBSD Map
 - 50 by 100 µm size
 - 50 nm step-size
 - ~ 2.3 million points
- Maps looks misindexed, but > 99.999% of points are indexed
- FSD image also shows small areas

Forward scatter diode on EBSD camera

- EBSD Map at higher mag.
 - 5 by 5 µm size
 - 10 nm step-size (theoretical)
 - ~ 290.000 points
- Small grained areas become visible

Institute for Applied Materials (IAM-AWP)

odd

Characterziation (as-rolled) EBSD

- Bi-modal grain structure can be observed
- Average grain size might be misleading

Characterziation (as-rolled) EBSD

- Production of large batch was successfull
- Excellent mechanical properties
- Conclusion from microstructural investigation need to drawn carefully (possible mismatch TEM <-> SEM)
- FIB analysis may give more information about grain shapes

Special Thanks

High temperature materials group (IAM-AWP)

S. Baumgärtner, L. Commin, B. Dafferner, T. Gräning, S. Heger, A. Krüger, R. Lindau, A. Möslang, J. Reiser, M. Rieth, V. Widak, R. Ziegler

Material processing (IAM-WPT)

S. Antusch, N. Denker, J. Moch, M. Müller, M. Offermann,

Analytics and testing (IAM-AWP)

T. Bergfeld, D. Bolich, M. Hoffmann, U. Jäntsch, M. Klimenkov, H. Zimmermann

