

Wir schaffen Wissen – heute für morgen

A mechanism of nitridation process in the Zr-O-N system during air oxidation

<u>Sanggil Park</u>^a, Leticia Fernandez-Moguel^a, Martin Steinbrück^b, Jonathan Birchley^a, Horst-Michael Prasser^{a,c}, Hans Jürgen Seifert^b

^aPaul Scherrer Institute, Switzerland ^bKarlsruhe Institute of Technology, Germany ^cETH Zürich, Switzerland

NuMat 2014: The Nuclear materials Conference

27-30 October 2014, Hilton Clearwater, Florida

- Motivation and Introduction of the air oxidation modeling
- Part I. Phases in the Zr-O-N system
- Part II. Conceptual nitridation process
- Part III. Mechanism of nitridation process
- Summary and Outlook

Air Ingress scenarios

- Reactor sequences
 - Late phase after RPV failure
 - Mid loop operation: Refueling
- Spent fuel sequences
 - Spent fuel pool draining
 - Dry storage cask drop

Taken from: www.josephmiller.typepad.com Spent fuel pool draining


```
Taken from: www.power-eng.com
Dry storage cask drop during transport
```

TMI-2 Core End-State Configuration

Late phase after RPV failure

Taken from: www.cleanenergyinsight.org Refueling: RPV head removal

Nitrogen reservoirs in reactors

- PWR
 - Hydroaccumulator filling by nitrogen
 - Passive high pressure injection

- BWR
 - Inerted containment by nitrogen
 - to prevent hydrogen combustion

➤ Is nitrogen an inert gas?

- Dissociation of double bond = +497 kJ/mol
- **Oxygen** Gibbs energy of formation ΔG_{ZrO_2} = -896 kJ/mol (1073.15K)

 (O_2)

Dissociation of triple bond = +945 kJ/mol

Nitrogen Gibbs energy of formation ΔG_{ZrN} = -264 kJ/mol (1073.15K) (N₂)

> After oxygen is sufficiently consumed, nitrogen plays an active role!

1st role of nitrogen: cladding degradation by volume mismatches between ZrO₂ and ZrN

micro porous and macro cracked oxide forms due to ZrN formation and reoxidation

2nd role of nitrogen: exothermic heat release during ZrN formation and reoxidation

accelerate the oxidation kinetics and enhance the heat release

Limitations in current state of knowledge on the nitridation process

Post-test investigation

- The results of post-test investigations reveal no metastable state and phase transformations during the process
- The understanding of nitridation process is phenomenological
- Recently, Zr-O-N ternary compounds were detected by Raman investigation

Binary system analysis: Zr-O and Zr-N

Only binary compounds, ZrO₂ and ZrN, are involved during the process

PAUL SCHERRER INSTITUT

Zr-O-N ternary system: ZrO₂-Zr₃N₄ pseudo binary system

Zr-O-N system

Electronegativity

 \blacktriangleright Nitrogen rich Zr₃N₄ phase is a mestastable state and thus is decomposed to ZrN at high temperatures

Zr-O binary system

Zr-N binary system

1200

800

600.

400

200

ZrO₂

 $Zr_7O_{11}N_2$

Temperature (°C)

1000 - m +

vt +

"m + β -type"

⁻**Ι**(β' 20 С

7.

> Zirconium oxynitrides phases:

Corm

70		B T	Zr (+4)
ZŗU	2 - 2	$x^{N}4x$	O (-2)
K.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3	N (-3)
+4*1 -2*(2	-2x) -	3*(4x/3) =	= 0

 $c + ZrN(+N_2)$

γ

60

θ+

mol % ZrN_{4/3}

40

 $Zr_7O_8N_4$

 β + ZrN (+N₂)

 $\gamma + \text{ZrN}_{4/3}$

80

Taken from: (Lerch; 1998)

Zr₂ON₂

$2rO_{2-2x}N_{\frac{4x}{3}}$	FUIIIula	fraction (x)
$\boldsymbol{\beta}'\left(x=\frac{3}{14}\right)$	$Zr_7O_{11}N_2$	0.214
$\boldsymbol{\beta}^{\boldsymbol{\prime}}\left(\boldsymbol{x}\sim\frac{4.8}{14}\right)$	$\sim \mathrm{Zr}_{7}\mathrm{O}_{9.5}\mathrm{N}_{3.0}$	~ 0.343
$\boldsymbol{\beta}\left(x=\frac{6}{14}\right)$	$Zr_7O_8N_4$	0.418
$\mathbf{\gamma}\left(x=\frac{3}{4}\right)$	Zr ₂ ON ₂	0.75

Zriconium oxynitride phases retain the cubic fluorite structure of c-ZrO₂

- oxygen vacancies formed by the nitrogen incorporation, the original cubic lattice has been gradually distorted.

100

 $ZrN_{4/3}$

• O_2/N_2 dissolution to α -Zr and oxide formation after saturation of α -Zr(O)

- Stabilization of t-ZrO₂ near the interface
- High compressive stress, low grain size and sub-stoichiometry near the interface.

Part II – Conceptual nitridation process

- Oxide/Nitride metastable system near the interface (c-ZrO₂ /o-Zr₃N₄)
- After solubility limit of the concentration of oxygen vacancies ($V_{O}^{\circ\circ}$)
- $c-ZrO_2 + \frac{2}{3}N_2 \rightarrow \frac{1}{3}o-Zr_3N_4 + 2O(-14.34\% \text{ molar volume shrinkage from } c-ZrO_2)$
- After solubility limit of α -Zr(O,N)

PAUL SCHERRER INSTITU

- → Zr + $\frac{2}{3}$ N₂ → $\frac{1}{3}$ 0-Zr₃N₄ (from α-Zr(O,N))
- Nitrogen rich part of Zr_3N_4/γ - Zr_2ON_2 system near the interface
- $\clubsuit \frac{1}{2} \operatorname{ZrO}_2 + \frac{1}{2} \operatorname{Zr}_3 \operatorname{N}_4 \longrightarrow \operatorname{Zr}_2 \operatorname{ON}_2$

– Nitrogen rich Zr_3N_4 phase is a mestastable state and thus is decomposed to ZrN (and/or) γ -Zr₂ON₂ at high temperatures (above 800°C)

 $Zr_3N_4 \rightarrow 3ZrN + \frac{1}{2}N_2$

$$4 \operatorname{Zr}_{3}\operatorname{N}_{4} \xrightarrow{+3\operatorname{O}_{2}-2\operatorname{N}_{2}} 6 \operatorname{\gamma-Zr}_{2}\operatorname{ON}_{2} \xrightarrow{+9\operatorname{O}_{2}-6\operatorname{N}_{2}} 12 \operatorname{m-ZrO}_{2}$$

• <u>ZrN and γ -Zr₂ON₂ are optically golden-yellow color.</u>

• Decomposition of Zr_3N_4/γ - Zr_2ON_2 system to ZrN and m-ZrO₂ and β -type oxynitride phases from 800°C

- Accelerated self-sustaining nitridation process (solid solution reaction and reoxidation) $2N(ZrN) + 3O_0^X \rightarrow 2N'_0 + V_0^{\circ\circ} + 3O(ZrN)$
- Accelerated by low activation energy

$$2N_0' + V_0^{\circ\circ} + 30 \longrightarrow N_2 + 30_0^X$$

- Self-sustained by newly generated nitrogen

Reactions

PAUL SCHERRER INSTITU

I. Nitridation (solid-gas reaction): $N_2 + 3O_0^X \rightarrow 2N'_0 + V_0^{\infty} + 30$ (reducing condition; nitrogen activity and partial pressure are higher than oxygen's) II. Nitridation (solid solution reaction): $2N(ZrN) + 3O_0^X \rightarrow 2N'_0 + V_0^{\infty} + 30(ZrN)$ (reducing condition; nitrogen activity and partial pressure are higher than oxygen's) III. Reoxidation: $2N'_0 + V_0^{\infty} + 30 \rightarrow N_2 + 30_0^X$ (oxidizing condition; nitrogen activity and partial pressure are lower than oxygen's)

- \bullet At 1 N_2 comes in and then comes out at 3
- \bullet $N_{\rm 2}$ acts as a catalyst by accelerating the whole reaction.
- Nitrogen solution (N) accelerates the whole reaction.

N accelerates the nitridation

PAUL SCHERRER INSTITUT

Part III – Mechanism of nitridation process

Part III – Mechanism of nitridation process

 $> p_{0_2}/p_{N_2}$ stability diagram (from Thermo-Calc. calculation)

Cladding degradation by self-sustained nitridation-reoxidation

Nitridation process	Volume change and heat generation	
In the beginning: t-ZrO ₂ and α -Zr(O,N)	$\Delta V_{t-ZrO_2 \rightarrow c-ZrO_2} = +0.15 \%$	
Step I. Nitrogen incorporation (gas-solid reaction) near the		
oxide-metal interface:	$\Delta H_{O-N} = -500 \text{ kJ/mol N}$	
	$\Delta H_{V_0^{\circ\circ}} = -190 \text{ kJ/mol } V_0^{\circ\circ}$	
Step II. Oxide/Nitride metastable system near the oxide-metal	$\Delta V_{c-ZrO_2 \to o-Zr_3N_4/\gamma - Zr_2ON_2} = -11.49\%$	
interface		
Step III. Nitrogen rich part of Zr_3N_4/γ - Zr_2ON_2 system near the		
interface		
Step IV. Decomposition of Zr_3N_4/γ - Zr_2ON_2 system to ZrN and	$\Delta V_{ZrN \to m-ZrO_2} = +42.45\%$	
m-ZrO ₂ and β -type oxynitride phases from 800°C		
	$O_2(g) + ZrN \rightarrow m - ZrO_2 + N_2(g)$	
Ctop V/ Appalarated calf quataining nitridation process (calid	$\Delta H_{Reoxidation} = -732 \text{ kJ/mol ZrN}$	
Step v. Accelerated self-sustaining nitridation process (Solid		
In the end: ZrO ₂		

Limitations in current state of knowledge on nitridation process

Post-test investigations and binary system analysis

Different approach to develop a detailed conceptual model

- Theory: Zr-O-N ternary system analysis from different fields and thermodynamics
- Simulation: Thermo-Calc calculation (using TTZR1 and ALCHYMY databases)
- Experiment data: KIT SETs data and literature findings

A mechanism of nitridation process in the Zr-O-N system

- I. Solid-gas nitridation
- II. Solid solution nitridation
- III. Reoxidation

Thank you for your attention.

Questions?

