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(13 Motivation — Air Ingress scenarios

Air Ingress scenarios

- Reactor sequences - Spent fuel sequences
— Late phase after RPV failure — Spent fuel pool draining
— Mid loop operation: Refueling — Dry storage cask drop

TMI-2 Core End-State Configuration E
Taken from: www.josephmiller.typepad.com

Spent fuel pool draining

2B inket 1 inlet

ccccccc
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surlaces

| S
Taken from: Wikipedia Taken from: www.cleanenergyinsight.org

Late phase after RPV failure  Refueling: RPV head removal

Dry storage cask drop during transport
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«(-{}» Motivation — Nitrogen reservoirs in reactors

Nitrogen reservoirs in reactors

° PWR d BWR
— Hydroaccumulator filling by nitrogen — Inerted containment by nitrogen
— Passive high pressure injection — to prevent hydrogen combustion
PRESSURIZED

GAS —e

Inertization by N
X

Reactor pressure vessel

Main steam line

BORATED
WATER

Pressure
suppression
pool

Nitrogen tank

NHORMALLY S/
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CHECK L
VALVES
Taken from: www.lke.mavt.ethz.com Taken from: www.lke.mavt.ethz.com
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(13 Introduction — Role of nitrogen during air oxidation

> |s nitrogen an inert gas?

= Dissociation of double bond = +497 kJ/mol
Oxygen = Gibbs energy of formation AGz,o,= -896 kJ/mol (1073.15K)
(O,)
= Dissociation of triple bond = +945 kJ/mol
Nitrogen = Gibbs energy of formation AGyn=-264 kJ/mol (1073.15K)
(N,)

» After oxygen is sufficiently consumed, nitrogen plays an active role!

1%t role of nitrogen: cladding degradation by volume mismatches between ZrO, and ZrN
= micro porous and macro cracked oxide forms due to ZrN formation and reoxidation
2"d role of nitrogen: exothermic heat release during ZrN formation and reoxidation

= accelerate the oxidation kinetics and enhance the heat release
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(13 Introduction — Purpose of the present study

» Limitations in current state of knowledge on the nitridation process

Post-test investigation

= The results of post-test investigations reveal no metastable state and phase transformations during
the process

= The understanding of nitridation process is phenomenological
= Recently, Zr-O-N ternary compounds were detected by Raman investigation
Binary system analysis: Zr-O and Zr-N

= Only binary compounds, ZrO, and ZrN, are involved during the process

- _~Theory s Simulation “ssssssssssssss=Experiment _

Zr-O-N system analysis Thermo-Calc calculation KIT SETs data
Thermodynamics using Zr-0-N database Literature findings
pryvees grreaeey _chhaa

— e, ]
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=

Part | — Phases in the Zr-O-N system

» Zr-O-N ternary system:
Zr0,-Zr;N, pseudo binary system
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Taken from: http://www.chem.ufl.edu/~itl/4411/lectures/lec_16.html

» Nitrogen rich Zr;N, phase is a mestastable state and thus is decomposed to ZrN at high temperatures

A 204 40
Electrgnegativity difference
Copyright @ 2009 Pearson F'rlznlice Hall, Inc.

|
' AE (Zr-0)=2.11

|
AE (Zr-N) = 1.71

"« Zr0,: lonic bond
 Zr4N,: lonic-covalent bond (Polar bond)

ZrN: Metallic bond
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(= Part | - Phases in the Zr-O-N system

» Zr-O binary system

O-Zr Phase diagram
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» Zr-N binary system

N-Zr Phase diagram
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(= Part | - Phases in the Zr-O-N system

. . " Zr (+4)
» Zirconium oxynitrides phases: ZrO;_oxNax (9
i 9 NB
Formula Zr3N, mol +4*1 -2%(2-2X) -3*(4x/3) = 0
fraction (x)
1200 1+ G 2N (1
s c C+ LN {(+
By (X — %) ZI‘7011N2 0.214 000m £ 2
;(3“ B+ ZrN (+Ny)
y ~ ﬂ ~ ZI‘709_5N3_0 ~ 0.343 E 800+
B (x 14) & ' >
8 600 “m + pB-type” + ¥ y + 2Ny
6 Zr5,0gN 0.418 -
px=g5) T %
400+
_3 Zr,0N, 0.75 '
Y (x - 4) 200 LIV N V0L A B 7
0 20 40 60 80 100
ZrO, mol % ZrNy, ZrNyss

Taken from: (Lerch; 1998)

o NP | - .?n'
- 0xygen vacancies formed by the nltrogen . ;
incorporation, the original cubic lattice has 6O b
been gradually distorted. Zr,0gN,
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(13 Part Il — Conceptual nitridation process

= O,/N, dissolution to a-Zr and oxide formation after saturation of a-Zr(O)

0, N, | I

1 I | |

: : [ [

| | y v

v v

0 N3- 0% e 20 t-210,
a-Zr(O,N) e

Oxygen and nitrogen dissolution Oxide formation

= Stabilization of t-ZrO, near the interface
- High compressive stress, low grain size and sub-stoichiometry near the interface.

0 N,
|2 I C:? I\fE
| | | |
. : i | mz10
A/ -ZrOz ¥ v 2
2- 3-
m t-2r0, mtlroz
Cl“Zf(O,N) (I-ZF{O,
Undulation of the metal/oxide interface t-ZrO2 thin layer formation

= O, consumption by forming a-Zr(O) and ZrO,, N,

: : - . .Zr0,. . o
= N, incorporation by stabilizing c-ZrO, Oxide-Metal [EESSSSNN Oxide/Nitride
inferface &-—Zr{O N) metastable system
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(13 Part Il — Conceptual nitridation process

= Oxide/Nitride metastable system near the interface (c-ZrO, /0-Zr;N,)

— After solubility limit of the concentration of oxygen vacancies (Vg )

®» c-Z2r0, + %3 N, — V3 0-Zr;N, + 20 (-14.34% molar volume shrinkage from c-ZrO,)
— After solubility limit of a-Zr(O,N)

®» Zr + %4 N, — Y5 0-Zr;N, (from a-Zr(O,N))

= Nitrogen rich part of Zr;N,ly-Zr,ON, system near the interface

» 15 710, + % Zr,N, — Zr,0N,

— Nitrogen rich Zr;N, phase is a mestastable state and thus is decomposed to ZrN (and/or) y-Zr,ON,
at high temperatures (above 800°C)

Zr,N, — 3ZIN+ %N,

+30,—2N, +90,—6N,
4 Zr,N, ——3 6 y=Zr,0N, ——— 12 m-Zr0,

= ZrN and y-Zr,0ON, are optically golden-yellow color.
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=

Part Il - Conceptual nitridation process

= Decomposition of Zr;N,/ly-Zr,ON, system to ZrN and m-ZrO, and B-type oxynitride phases
from 800°C

1200

t
. {+¢ c ¢ + ZrN (+N,)
Formula Zr3N, mol 1000 4m + 1
fraction (x) %) ] il D A+ ZrN (+Ny)
B’ (x — i) Zr;011N; 0.214 S 800- T -*
14 ha 5
B"( - ﬁ) ~ Zr;095N3 ~0.343 © | =
14 N 8 6004 “m + B-type + % y + ZrNys
p(x _3) Zr;0gN, 0418 | E _ «
4 217 400
_3 Zr,0N, 0.75 7
Y (x — 4)
200 Ty B 15 T Bl
0 20 40 60 80 100
ZrO, mol % ZrNy ZrNy

Taken from: (Lerch; 1998)

= Accelerated self-sustaining nitridation process (solid solution reaction and reoxidation)
2N(ZrN) + 30% — 2N§ + Vg + 30(ZrN)
- Accelerated by low activation energy
2Ng + V5 +30 — N, + 303
- Self-sustained by newly generated nitrogen
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(13 Part Ill - Mechanism of nitridation process

> Reactions

|. Nitridation (solid-gas reaction): N, + 305 — 2Ng + Vg + 30

(reducing condition; nitrogen activity and partial pressure are higher than oxygen’s)

II. Nitridation (solid solution reaction): 2N(ZrN) + 305 — 2Ng + V5 + 30(ZrN)
(reducing condition; nitrogen activity and partial pressure are higher than oxygen’s)

lll. Reoxidation: 2Ng + V5 + 30 — N, + 303

(oxidizing condition; nitrogen activity and partial pressure are lower than oxygen’s)

Nitridation process 1523 1 ) 3
‘ Oz(ln) Nz {OUt]
LN, + 305 = 2N) + V2 430 Ny in) » o oy
2, ZNI(ZrN)M+ 303 — 2N, +v§, +30(ZrN) . N » IrN » 2r0,
3.2Ng + Vg +30 — N, +30% o-Zr(ON) o-Zt{ON)
! a-Zr(O,N)

¢ At 1 N, comes in and then comes out at 3
* N, acts as a catalyst by accelerating the whole reaction.
* Nitrogen solution (N) accelerates the whole reaction.

N accelerates the nitridation
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=

Part Ill — Mechanism of nitridation process

Oxidation 0,/N, dissolution

4y !
210, zr(ON)
= =

I | N, incorporation

e @

Saturated c-ZrO, Saturated a-Zr(O,N)

T

F----- Nitride formation

Self-sustained \l/
loop to the end

PN,/pO; in nitride
stable region?

(4] N (0,is available)

Ll _———— Reoxidation

0, and N, are

& ZrO 2-X
O/M interface
a=Zr(O,N)

ZrO,
ZrN
a-Zr(O,N)

Y (N,is available)

navailable or reflooc
is successful?

5

Stop: self-sutained Io@

— —| Continue: self-sustained loop

v
CEnd: fully oxidized ZrOD

ZrO,

PN, > PN,/pO,
ZrN >
ol 2
] Zro,

Zr 46

atacertainT

Simple reaction equations
@ zr+0,=17r0,

(@ 2r0,+ % N,=ZrN + 0,
3) Zr + % N, = ZrN*

@ zrN+ 0,=2r0, + % N,

*Reaction (3), nitridation of Zr, is not with
fresh Zr but with saturated a-Zr(O,N).

Nitridation process (defect equations)

I. Nitridation (solid-gas reaction):

N, + 308 — 2Nj + V5 + 30

Il. Nitridation (solid solution reaction):
2N(ZrN) + 308 — 2Ng + Vg + 30(ZrN)

I1l. Reoxidation: 2Nj, + Vg + 30 — N, + 30%
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w = Partlll - Mechanism of nitridation process

> poZIpsttablllty diagram (from Thermo-Calc. calculation)
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» Cladding degradation by self-sustained nitridation-reoxidation

Nitridation: AVC—ZI‘OZ—>O—ZI‘3N4/ y—Zr,ON, = —11.49%

-micro porous media  FEE@ES T
= #.::,‘;.-:.: <
0 P - Geisl ooy X
Reoxidation: AV, .nom— 7r0, — 44245 /o P ,Malroxmanon

- micro cracked media (mainly circumferential cracks) at 1000°C forL hour
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(13 Part Ill - Mechanism of nitridation process

Nitridation process

Volume change and heat generation

In the beginning: t-ZrO, and a-Zr(O,N)

Step I. Nitrogen incorporation (gas-solid reaction) near the
oxide-metal interface:

AVi—zr0,-c-zr0, = +0.15%

AHo_y = —500 kJ/mol N

AHy» = —190 k/mol Vo

Step II. Oxide/Nitride metastable system near the oxide-metal
interface

Step lI. Nitrogen rich part of Zr;N,/ y-Zr,ON, system near the
interface

AVC—ZI'OZ—>O—ZI'3N4,/ Y—Zr,0N, = _11'49%

Step IV. Decomposition of Zr;N,/ y-Zr,ON, system to ZrN and
m-ZrO, and B-type oxynitride phases from 800°C

Step V. Accelerated self-sustaining nitridation process (solid
solution reaction and reoxidation)

In the end: ZrO,

AVZrN—>m—Zr02 = +4‘245%

0,(g) + ZrN » m — ZrO, + N,(g)
AHRgeoxidation = —732 kJ/mol ZrN
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(= Summary and Outlook

Limitations in current state of knowledge on nitridation process

= Post-test investigations and binary system analysis

Different approach to develop a detailed conceptual model
= Theory: Zr-O-N ternary system analysis from different fields and thermodynamics
= Simulation: Thermo-Calc calculation (using TTZR1 and ALCHYMY databases)

= Experiment data: KIT SETs data and literature findings

A mechanism of nitridation process in the Zr-O-N system
. Solid-gas nitridation
. Solid solution nitridation

. Reoxidation
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B51

Thank you for your attention.

Questions ?
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