

"Liquid metals in energy engineering"

R. Stieglitz, G. Gerbeth*1, Th. Wetzel, E. Baake *2, J. Fröhlich *3

- ***1 Helmholtzzentrum Dresden Rossendorf (HZDR)**
- ***2 Leibniz Universität Hannover**

***3 TU- Dresden**

KIT – Universität des Landes Baden-Württemberg und nationales Großforschungszentrum in der Helmholtz-Gemeinschaft **www.kit.edustionales Großforschungszentrum** in der Helmholtz-Gemeinschaft **www.kit.edustionales Großforschungszentrum** in der Helmholtz-Gemeinschaft

Content

- $\left\vert \cdot \right\rangle$ **Where** liquid metals appear **?**
- **Tale What** distiguishes liquid metals from others **?**
- \mathbb{R}^n **How to measure** in liquid metals ?
	- **Problem of scalars, vectors associated with opaqueness**
- П Dynamics of transport in liquid metals
	- er
1 Momentum
	- er
1 Energy
	- er
1 Phases
	- er
1 Interaction with magnetic fields –Magnetohdyrodynamics (MHD)
	- **Why** liquid metals behave different **?**
		- A glance at models, computational methods towards validation
- F **Building** reliable liquid metal systems (some engineering) **?**
- \mathbb{R}^n **Summary**

Why ?

Build ?

Technical Liquid Metal flows Where ?

History

- П Liquid metals are known to mankind since about 6000 years (natural Mercury)
- $\overline{}$ Refinement & casting since more than 4000 years (bronze, copper)
- П Iron production in Turkey since 3000 years
- П Alumina and Al alloy production on large scales in the last 200years
- П Human progress without liquid metals not imaginable
- **About 5% of electricity consumption in Europe by Al-production***

Industrial interest:

- Adaptive materials
- П Minimization of primary energy input
- П High demand on quality of surfaces

Requirements:

- Measurement techniques
- П Transport phenomena
- П Free surfaces
- П Active components (engineering)
- phase change problems

Liquid mercury in glass capsule

Bronze casting

Alumina preparation for casting

* www.world-aluminum.org

Thermal storage in CSP -Plants

Motivation for liquid metals

- higher temperatures \longrightarrow higher efficiency **Ta**
- high conductivty \longrightarrow high power density \Box
- excellent heat transfer \qquadblacktriangleright fast system response
- low pressure \longrightarrow simple civil engineering n.
- ➡ Compact systems

Alkali metals

 \rightarrow efficiency gain direct thermo-elec. conversion \blacksquare

5

Thermo- electric conversion

Principle

- β''-Alumina solid electrolyte
- Key process: Na-ionization (∆*^p* across electrolyte)

Na Na+ + e-

- Anode: *p*~1-2bar; *T* ~600-1000°C
- Cathode: *^p* < 100 Pa; *T* ~200-500 °C

AMTEC perspective

- topping cycle of CSP Plant (η_{AMTEC} >30%)
- return heat sufficient for power plant operation (PCS and/or storage)

Liquid metal batteries

"A quite old idea "

Advantages

- simple construction
- cheap abundant materials
- high current densites $(>1kA/m^2$ compared to Li⁺ <10A/m²)

 $_{\it F}$ Ԧ

Where ?

- high cycle life time (hardly irrev. reactions)
- low energy costs \$/kWh*

but

- high temperatures (>250°C)
- low cell voltage
- susceptible to flow instabilities
	- Tayler –Instability
	- Electro-Vortex flows
	- Marangoni-Convection
	- Rayleigh Benard- Convection
	- ….
- Commercial vendor in MWh range *Kim et al., 2013, Chem. Rev. *2 Weber et al,2013 N.J.Phys

Nuclear Fusion: IFMIF (Int. Fusion Material Irradiation Facility)

Targets: ■ Secondary particle production (neutrons, fragments,.. ■ Heat removal

Development Structure

- **Example 1** ensure film height to attain neutrons with a
- **flow velocity avoiding Li boiling in vacuum.**

Where ?

arlsruher Institut

Nuclear Physics: Super-FRS-Target

Where ?

- Ħ Ion accelerator at GSI (U²³⁸-Ions, 10¹² Particles/Spill, 2GeV, Puls duration 50ns) for particle physical experiments for medical applications (www.gsi.de/fair/index.html)
- $\overline{\mathbb{R}}$ Solid targets faile since the instantaneous power release: 12 kJ/50 ns \rightarrow 240 GW
- **I** Generation of a stable Li-Jets in direction of gravity field

What distiguishes liquid metals from other liquids ? What ?

Elements suitable for engineering ?

alkali-metals (Li, Na,K+alloys)

basic metals (Pb, Ga, Sn+alloys)

-transitional metals—

R. Stieglitz et al. * @ *T*=600°C, *p*=105Pa, except GaInSn, Hg (*T*=20°C)

What distiguishes liquid metals from other liquids ?

General findings technical impact

- low kinematic **viscosity** \rightarrow turbulent flow $(v_{H2O} \sim 10^{-6} \text{m}^2/\text{s})$
-

-
-

-
-

What ?

- high **heat conductivity** \rightarrow scale separation of thermal from viscous boundary layer $(\lambda_{H2O} \sim 0.6W/(mK))$
	- \rightarrow time separation of temperature and velocity fluctuations (different damping !!!!)
- high surface **tension** \rightarrow different bubble transport/interaction mechanisms
	- **→** scale separation of velocity field and surface statistics (high retarding moment) $(\sigma_{H2O} \sim 52 \text{mN/m}))$
- high elec. conductivity \rightarrow velocity field modification by strong fields due to $(\vec{v} \times \vec{B})$ (Magnetohydrodynamics)
	- \rightarrow measurement access by electromagnetic means
	- **→** pumping (MHD-Pumps) and/or flow control
- **opaque decay no optical access**
- high boiling points \longrightarrow wide operational temperature threshold (ΔT)
- Complex **chemistry** \rightarrow alkali metals with Group V, VI, VII elements
	- \rightarrow exotherm. reactions
	- **→ heavy metals weak reactions with Group V-VII but**
	- ◆ dissolution transitional metals (structure materials !!!)

How to measure in liquid metals ?

- **Flow rate**electro-magnetic, Δp , UTT, momentum based
- **Visualization techniques**
	- **direct** $-$ X-Ray tomography
	- **indirect** CIFT, Utra-sound-transient time (UTT),….
	- **direct** Pitot-Tube (Δp)
		- magnetic potential probes (MPP)
		- fibre-mechanics

How ?

Non-intrusive – Ultra-sound doppler velocimetry (UDV), multi units \rightarrow mapping

Surfaces /2-phase

Velocity

- **direct** resistance probes
- **Indirect** X-ray, UTT \blacksquare
	- optic means for surfaces

Measurement: Flow rate-EMFM

Pr=0.02, *d*=60mm, *I*₀=410mA

Other designs

clamp on systems

Design wishes

- High penetration depth δ of field *B* into duct (\rightarrow low f f = frequency AC current supply)
- High magnetic field strength (high $\Delta\Phi_{\rm RMS}$)
- Large amount of windings ($\neg n$ n =wire turns)

Counter arguments

 \circledcirc HZD

- Low *f* yield high sensitivity to ambient stray signals
- High *B* modifies the flow Hartmann number *Ha*<<1 (*Ha*=(EM-forces/viscous forces))

ρν $Ha = d \cdot B \cdot \left| \frac{\sigma}{\sigma} \right|$

How ?

Г $\frac{m_0}{m_0}$ $\frac{m_0}{m_0}$ $\frac{m_0}{m_0}$ $\frac{m_0}{m_0}$

receiver coil1 receiver coil2 chann induced currents magnetic field

Measurement: flow visualization- 2 phase-flow

Main feature:

- П X-ray visualization of two-phase flows
- г Restriction of the mold size in beam direction**Example :** LIMMCAST @ HZDR

How ?

Measurement: flow visualization- 2 phase-flow

Measurement :Flow velocity

Ultra-Sound Doppler Velocimeter (UDV)

Principle (particle tracking)

- D **• Distance change from sensor due to** motion from 1 \rightarrow 2 between two pulses.
- П Determination of the time differencefrom the phase shift between received echoes
- Velocity at a discrete distance

Profile

- Ī. Separation of sound path in time intervals (gates Δt) allows recording of a velocity profile. Therefore,
	- $\overline{}$ ■ Coupling of a time *t_i* with a measurement position
	- $\overline{}$ Determination of the local velocity u_i in the interval i

Measurement :Flow velocity

Ultra-Sound Doppler Velocimeter (UDV)-Validation

- Good agreement between measurement and literature profile
- Detailed resolution of the velocity profile
- Deviation literature profile for r/R>0.6 less than 0.5% (Schulenberg&Stieglitz, NED, 2010)

Measurement: Flow velocity

Transient start-up behaviour of EM pump in THESYS Loop

Ultra-Sound Doppler Velocimeter (UDV)

- Ē, Fluid temperature: 400°C
- П Temperatur compensation durch (Wave Guide)
- п Inclination angle: 45°
- П Tube diameter: 60 mm

Measurement- flow mapping

- Multi- UDC set-up $\mathcal{L}^{\mathcal{A}}$
- Contactless-inductive flow tomography (CIFT)

CIFT - Principle

- Measurement of induced magnetic field (Hall-sensors) \mathbf{r} at given
- prescribed magnetic field
- numeric reconstruction

Optical method - Double-Layer-Projection (DLP) Features: Color encoding (error estimate, filtering, cross-correlation) Scanner (point, line and area acquisition) \mathcal{C} High speed camera $\mathcal{L}_{\mathcal{A}}$ **P1** \overline{a} 冡 scanner (CPU r **Tax 1** 医耳 high-speed camera **P2**laser-module $P₄$ $P₁$ $L₂$ **P3**coplanar glass plate $L₁$ $P₃$ P_2 **P4RO** unknown surface $P₀$ KIT, PhD, 2008, Hillenbrand **MNR**

Dynamics of transport in liquid metals

Momentum transfer: numerical approach

- At a first glance simple: put numerous cells (fluid, solids) in SA geometry
- But: with tremendous effort (correction terms) successful for low Re by CFD means

Why ?

Example : Fluid assembly Flow (heated rods)

Turbulent momentum transfer: numerical approach

- П **Quality of CFD computations not defined by number of cells Reynolds averaged modelling of momentum transport**
- Reynolds-Averaged Navier-Stokes (RANS) equations → closure problem in

$$
\frac{\partial}{\partial x_i} \left(\overline{u_i} \cdot \overline{u_j} + \overline{u_i^{\prime} \cdot u_j^{\prime}} \right)
$$

- Standard model assumption: gradient hypothesis
- Simplification **⁼**isotropic exchange coefficient

General

- г Turbulent flow modelling demands qualified user (rather than computing power)
- F **No substantial difference of liquid metals to ordinary liquids in bounded flows**

Why ?

convective term

Energy transfer: numerical approach

$$
\rho c_p \left(u \frac{\partial \overline{T}}{\partial x} + v \frac{\partial \overline{T}}{\partial y} \right) = -\frac{\partial}{\partial y} \left(-\lambda \frac{\partial \overline{T}}{\partial y} + \rho c_p \overline{v T} \right)
$$

- П Analogous to turbulent viscosity $\varepsilon_{\!M}\!\!=\!\mu_t/\rho$ a turbulent heat flux appears and thus
- a turbulent eddy heat diffusivity $\varepsilon_H = \lambda_t / (\rho c_p)$ can be defined,
- П the turbulent Prandt number Pr_t

$$
Pr_{t} = \frac{\varepsilon_{M}}{\varepsilon_{H}} = f\left(Re, Pr, \frac{y}{R}\right) = \frac{\overline{u'v}}{\overline{v'T}} \frac{\frac{\partial T}{\partial y}}{\frac{\partial u}{\partial y}}
$$

,

Consequences

- H P_{r_t} is far of being a constant (in reality a tensor)
- П Difficult to measure directly, since it is a measure of
	- П dimensions and
	- П available sensor sizes as well as the
	- H temporal resolution)
- $\mathcal{C}^{\mathcal{A}}$ Involves several modelling problems
- \mathbf{r} Hydraulic diameter concept is not valid (except for forced convection)

Energy transfer: numerical approach

How to solve the closure problem of the turbulent heat flux?

 \blacksquare **Standard approximation: Gradient hypothesis**

$$
\overline{u_i' T} = -\varepsilon_H^i \frac{\partial T}{\partial x_i} \qquad \rightarrow \qquad \overline{u_i' T} = -\varepsilon_H \frac{\partial T}{\partial x_i}
$$

enforced isotropic exchange coefficient ε_{H}

ш **Reynolds – Analogy (Standard in all CFD-Codes)**

$$
\overline{u_i} \overline{T} = -\varepsilon_H^i \frac{\partial T}{\partial x_i} \approx -\frac{\varepsilon_M}{t} \frac{\partial T}{\partial x_i} \quad \text{with} \quad P_r = \frac{\varepsilon_M}{\varepsilon_H}
$$
\n
$$
\text{tensor} \quad \text{constant}
$$

- \blacksquare **Consequences & typical problems (CFD Simulation with standard** Pr_t **=0.9)**
	- П \blacksquare *u* and *T*- Statistics completely different, Pr_t is function of $Pr_t = (y, Re, Pr, Gr)$
	- \mathcal{C} **no anisotropic diffusivity**
	- П **Missing transport characteristics (diffusor, recirculation flows, free jets)**
	- **→ Zero-dimensional approach is problematic only valid for forced** convection (otherwise extremely qualified user required)
	- **Use of more cells and computing will not help only modelling**

Energy transfer: numerical approach

Direct numerical Simulation (DNS)

- П only chance to obtain transport coefficients but
- П limitation of Reynolds number (flow velocity)
- П **Formulation of benchmark problems**

Backward facing step

- Stratification problem (buoyancy) at large axial ΔT
- Flow separation at geometry discontinuities

Approach

- Choice of small *Pr*-Fluid (*Pr*_{Sodium}=0.007)
- LES *u*-Field is DNS of *T*-Field

Goal

- Validity limits of CFD codes.
- П Development of advanced turbulent heat flux models.
- Reliability threshold of design correlations.

Energy transfer: Validation

Background : Pin single element of fuel assembly

- Scope : Turb. heat transfer in forced, mixed and buoyant convective flows $(Re \rightarrow 6.10^5)$
- Measure: Development of models for turbulent heat flux;
	- $\mathcal{C}_{\mathcal{A}}$ Determination of *Nu*-correlations;
	- $\mathcal{C}^{\mathcal{A}}$ Evaluation of transitional regimes (model validity).

Myrrah-type target IFMIF-type target FAIR-type target
Water u_0 =2.5 m/s Lithium jet Deuteron Beam neutron **Low Flux (7.5L)** Medium Flux (6L) High Flux (0.5L) **Nozzle outlet** 0° zy 22.5° x45°- Na $u_0 = 2.5$ m/s **MNR**

Why ?

Liquid metals and free –surfaces

Appearance:

- П Gas bubbles in flow (process engineering, in reactors, ……)
- П ■ Metal casting
- m. **Nuclear targets**

Free surface flows

Numerical challenges

- $\overline{}$ Different **statistics** of *^u* and *h*-field (damping times/diffusion times).
- Ħ Large **density differences** between liquid and gas phase $(\rightarrow \infty)$ for vacuum).
- T. **Coupling** of turbulent *u***-field** with *h***-field** (lack of adequate models: e.g. level-set methods)
- $\mathcal{C}^{\mathcal{A}}$ **Scale separation** of *u* and *h* (viscosity << surface tension)
- $\mathcal{L}_{\mathcal{A}}$ Potential **phase transition** requires LM adapted cavitation models.
- $\overline{}$ Flow mostly **transient** \rightarrow time step given by *p*- and *u*-fluctuations.
- \mathcal{C} Complex geometries of induce **secondary flows** (e.g. edges, curved planes) leading to large computation times.

Experimental challenges

- П Development of free surface detection **sensors** with high temporal & spatial resolution
- $\mathcal{L}_{\mathcal{A}}$ Lack of experiments with **simultaneous** *^u* **and** *h***-field measurements** (unknowns statistics and diffusion times)

Free surface flows- Phenomena

Observations

- П Surface tension contracts the stream
- $\mathcal{L}_{\mathcal{A}}$ Shear stress/surface tension in causes inversion of jet (twist)
- $\mathcal{C}_{\mathcal{A}}$ At discontinuities capillary waves are generated.

Turbulent free surface flows- Validation

ADS Windowless Target: 2nd Generation (MYRRHA)

Experiment : Water

Free surface flows- Validation

Example:

 Wave propagation on a liquid lithium surface caused by precipitation at the nozzle exit (Kondo et al. (2006) Osaka University)

Results

- Excellent agreement of numerical and experimental data for large scales
- **LES allows resolution of fine structure**

Free surface flows- Validation

Target development FAIR:

- $\mathcal{C}^{\mathcal{A}}$ Acceptable agreement of steady state "mean" surface shape
- \blacksquare Convective instabilites can be captured by RANS methods
- $\mathcal{L}_{\mathcal{A}}$ Local unsteady phenomena require an LES

Example: sodium jet u_0 =2,5m/s

PhD Gordeev,2008;

Daubner, Stoppel, & KALLA DIRAC-Final Report, 2009

SNR

Why ? Free surface flows- PhenomenaWhat happens for a free jet impinging on a surface ? splashing by momentum exchange ь Droplet generation generation L. Cavitation ? \blacksquare Example: IFMIF –lithium flow entering the catcher lithium jets with different $u_0 = 5,15$ m/s, $p=10^{-3}$ Pa u_0 = 5m/s $Solution$ Time 1.07674 (s) u_0 =15m/s Velocity $[k]$ (m/s) © Gordeev, 2014**44**

Interaction with magnetic fields - MHD-flows

Interaction with magnetic fields - MHD-flows

Major phenomena

- Highly electr. conducting walls \rightarrow high current densities \rightarrow large Δp
- thin conducting walls \rightarrow current density reduction \rightarrow M-shaped velocity profiles (high jets $\leq t$ walls $||B|$)
- Electrically coupled ducts \rightarrow superposition of currents \rightarrow large scale current circulation \blacktriangleright multi-channel effects (even larger $\Delta p)$
- Best in terms of velocity profile and Δp electrically insulated walls $\rightarrow \Delta p \sim B$ are (neutron resistance ??)

Engineering: LM-Pumps

Liquid metal operated loops utilize often MHD-pumps, why ?

- П Low maintenance costs (absence of sealings, bearings, moving parts),
- Low degratation rate of structure material,
- Simple replacement of inductor,
- Fine regulation of flow rate and pump characteristics $(p / p, V / V < 1)$.
- Computations: Electrodynamics + MHD (Stieglitz, FZKA-6826)

Engineering: LM-Pumps

Sodium operated Annular Linear Induction Pump (ALIP)

- $\overline{\mathcal{A}}$ Q at Δp 150m³/h ...0.2MPa
- $\mathcal{L}_{\mathcal{A}}$ 115°<*T*<500°C

Engineering -Pumps

Development of new pump types at KIT (ACHIP -Alternating Current Helical Induction Pump)

Motivation

- High price of EM-pumps, no competition
- п Inspection, sealings
- complex set-up and loop integration

Ansatz

- Use of stator of asynchroneous motor (e.g. old pump, crane motor,….)
- × design of liquid metal duct in stator
- Г **Compensation of eddy current losses** by rotating soft iron core (in bearings)

Advantages

- Low construction price (1/10 to EM pump)
- F No sealings, conventional parts, pumpin in both directions possible

 \cdot

r High reliability low pressureoscillations $(\Delta V/V, \Delta p / p < 10\%)$

r ^{active} stator length

rotating
soft iron core

stator

collector

Engineering -Pumps Build ?

Functional and performance tests of ACHIP

- $\overline{}$ Successful operation
- $\mathcal{L}_{\mathcal{A}}$ First shot : acceptable efficiency η_{max} =14% no optimization
- $\mathcal{L}_{\mathcal{A}}$ Next optimization
	- instead soft iron permanent magnets,
	- Use of 4 pole instead of 2 pole stator
- $\mathcal{L}_{\mathcal{A}}$ Resonable agreement between model and FOAK demonstrator

NaK pump in MEKKA @KIT

Engineering -Materials Build ?

Material selection: Depends strongly on liquid Example : Heavy liquid metal (here Pb⁴⁵Bi⁵⁵)

$\frac{1}{30}$ 550°C / 4300 h 600° C / 4000 h $\frac{1000 \text{ C}}{20 \text{ K}}$ $\frac{1000 \text{ C}}{1000 \text{ K}}$ $\frac{1000 \text{ K}}{1000 \text{ K}}$

420°C / 4000 h20KV 1000 X 1.4979 original 420 °C 4000h **100009000onset of corrosion800070006000 5000400030002000 1000 0500°C 550°C 600°C**

Material

Austenitic steel (316L-type) Influence of temperature on material compatibility *at optimal oxygen concentration 10-6 wt%* **Result**

Austenitic steels operable without protection for temperatures below 500 °C

Engineering -Materials Build[?]

Material:

F/M steel (HCM12a -type)

Influence of temperature on material compatibility *at optimal oxygen concentration 10-6 wt%* Result

Martensitic steels operable below ≤ 550 °C.

huge oxidation rate: up to 50 -100µm/10.000 h

and frequent spallation of oxide scale.

 \rightarrow contamination of liquid metal

reduced heat removal capability $(\lambda_{M_3O_4} = 1 \text{W/mK})$ $(\lambda_{M_3O_4} = 1$ W/mK)

Summary

- \mathcal{L} Liquid metal flows exhibit features different to normal liquids due to their thermo-physical properties.
- $\mathcal{L}_{\mathcal{A}}$ Conventional computational fluid dynamics tools exhibit deficits in simulating MHD flows, heat transfer problems and free surface flows if not liquid metal adapted due to
	- Strong anisotropic turbulence due to geometry, heat load,...
	- Scale separation of the boundary layers BL (viscous BL<< thermal BL,...)
	- $\overline{}$ Deficits of adequate coupling of free surface with turbulence modeling
- $\mathcal{L}_{\mathcal{A}}$ Recent progress in measurement techniques enables access to rather complex flow phenomena.
- $\mathcal{L}_{\mathcal{A}}$ Development process allows to define generic experiments focussing to
	- П develop more advanced physical models.
	- П generate a data base, local correlations for design of complex systems.
- Г. Each liquid demands a dedicated material study to ensure a safe life time performance especially in a nuclear environment

Authors thank especially to the Helmholtz funding through

