

"Liquid metals in energy engineering"

R. Stieglitz, G. Gerbeth^{*1}, Th. Wetzel, E. Baake ^{*2}, J. Fröhlich ^{*3}

- *1 Helmholtzzentrum Dresden Rossendorf (HZDR)
- *² Leibniz Universität Hannover

*3 TU- Dresden

KIT – Universität des Landes Baden-Württemberg und nationales Großforschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Content

- Where liquid metals appear ?
- What distiguishes liquid metals from others ?
- How to measure in liquid metals ?
 - Problem of scalars, vectors associated with opaqueness
- Dynamics of transport in liquid metals
 - Momentum
 - Energy
 - Phases
 - Interaction with magnetic fields –Magnetohdyrodynamics (MHD)
 - Why liquid metals behave different ?

A glance at models, computational methods towards validation

- Building reliable liquid metal systems (some engineering) ?
- Summary

Why?

Build?

Technical Liquid Metal flows Where?

History

- Liquid metals are known to mankind since about 6000 years (natural Mercury)
- Refinement & casting since more than 4000 years (bronze, copper)
- Iron production in Turkey since 3000 years
- Alumina and Al alloy production on large scales in the last 200years
- Human progress without liquid metals not imaginable
- About 5% of electricity consumption in Europe by Al-production*

Industrial interest:

- Adaptive materials
- Minimization of primary energy input
- High demand on quality of surfaces

Requirements:

- Measurement techniques
- Transport phenomena
- Free surfaces
- Active components (engineering)
- phase change problems

Bronze casting

Alumina preparation for casting

* www.world-aluminum.org

Fluid	Thermal oil at 300°C	Solar salt at 550°C	Air at 600°C, 1 bar	Na (600°C)	PbBi (600°C)	Sn (600°C)		
<i>T_{min}</i> [° <i>C</i>]	12	228	-195	98	125	232		
T _{max} [°C]	450	560	n.n.	883	1533	2687		
ρ [kg/m³]	812	1903	0,39	808	9660	6330		
η [<i>mPa*</i> s]	0,22	1,33	0,03	0,21	1,08	1,01		
c _p [kJ/(kg K)] λ [W/(m K)]	2,30	1,50	1,12	1,23	0,15	0,24		
λ [<i>W/</i> (<i>m K</i>)]	0,11	0,52	0,06	63,0	12,8	33,8		

Thermal storage in CSP -Plants

Motivation for liquid metals

- higher temperatures
- high conductivty
- excellent heat transfer fast system response
- low pressure
- Compact systems

Alkali metals

direct thermo-elec. conversion efficiency gain

Where ?

(HTF)

thermo

cline

➡ simple civil engineering

receiver

Thermo- electric conversion

Principle

- β"-Alumina solid electrolyte
- Key process: Na-ionization
 (Δp across electrolyte)

Na 🕈 Na⁺ + e⁻

- Anode: *p*~1-2bar; *T*~600-1000°C
- Cathode: *p* < 100 Pa; *T* ~200-500 °C

AMTEC perspective

- topping cycle of CSP Plant (η_{AMTEC} >30%)
- return heat sufficient for power plant operation (PCS and/or storage)

Liquid metal batteries

"A quite old idea "

Advantages

- simple construction
- cheap abundant materials
- high current densites (>1kA/m² compared to Li⁺ <10A/m²)

Where ?

- high cycle life time (hardly irrev. reactions)
- Iow energy costs \$/kWh*

but

- high temperatures (>250°C)
- Iow cell voltage
- susceptible to flow instabilities
 - Tayler –Instability
 - Electro-Vortex flows
 - Marangoni-Convection
 - Rayleigh Benard- Convection
 -
- Commercial vendor in MWh range
 *Kim et al., 2013, Chem. Rev.
 *² Weber et al,2013 N.J.Phys

Nuclear Fusion: IFMIF (Int. Fusion Material Irradiation Facility)

Targets:

Secondary particle production (neutrons, fragments,... Heat removal

Development Structure

- ensure film height to attain neutrons with a
- flow velocity avoiding Li boiling in vacuum.

Where ?

Nuclear Physics: Super-FRS-Target

Where ?

- Ion accelerator at GSI (U²³⁸-Ions, 10¹² Particles/Spill, 2GeV, Puls duration 50ns) for particle physical experiments for medical applications (www.gsi.de/fair/index.html)
- Solid targets faile since the instantaneous power release: 12 kJ/50 ns → 240 GW
- Generation of a stable Li-Jets in direction of gravity field

What distiguishes liquid metals from other liquids ?

Elements suitable for engineering ?alkali-metals (Li, Na,K+alloys)

basic metals (Pb,Ga,Sn+alloys)

6,94									10,81	12,01	14,01	16,00			
Li									B	C	N	O			
3									5	6	7	8			
Na Mg basic metals								26,98	28,09	30,97	32,06				
								Al	Si	P	S				
								13	14	15	16				
39,10	40,08	44,96	Sc Ti V Cr Mn Fe Co Ni Cu Zn						69,72	72,61	74,92	78,96			
K	Ca	Sc							Ga	Ge	As	Se			
19	20	21							31	32	33	34			
85,47 Rb 37	87,62 Sr ³⁸	88,91 ¥ 39	Y Zr Nb Mo Tc Ru Rh Pd Ag Cd							114,8 In 49	118,7 Sn ⁵⁰	121,8 Sb 51	127,6 Te		
132,9	137,3	175,0	178,5	180,9	183,8	186,2	190,2	192,2	195,1	197,0	200,6	204,4	207,2	209,0	209,0
CS	Ba	Lu	Hf	Ta	W	Re	OS	Ir	Pt	Au	Hg	TI	Pb	Bi	Po
55	56	71	72	⁷³	74	75	76	77	78	⁷⁹	80	81	82	83	⁸⁴
										-					

└───transitional metals

	Li	Na	Na ⁷⁸ K ²²	Pb	Sn	Pb ⁴⁵ Bi ⁵⁵	Ga ⁶⁸ In ²⁰ Sn ¹²	Hg
T_{melt} [°C]	180	98	-11	327	232	126	11	-39
$T_{boiling}$ [°C]	1317	883	785	1743	2687	1533	2300	356
ρ [kg/m3] *	475	808	750	10324	6330	9660	6440	13534
<i>c_p</i> [J/(kgK)]	416	1250	870	150	240	150	350	140
v [(m²/s)· 10⁻7]	7.16	2.6	2.4	1.5	1.6	1.1	3.7	1.1
λ [W/(mK)]	49.7	67.1	28.2	15	33	12.8	16.5	8.3
σ _{el} [A/(Vm)·10 ⁵]	23.5	50	21	7.8	15.9	6.6	8.6	5.7
σ [N/m·10 ⁻³]	421	202	110	442	526	410	460	436
@ <i>T</i> =300°C								

What distiguishes liquid metals from other liquids ?

General findings technical impact

- low kinematic **viscosity** → turbulent flow
- high heat conductivity => scale separation of thermal from

- high surface **tension**
- high elec. conductivity

opaque

- high boiling points
- Complex chemistry

- turbulent flow
 scale separation of the
- scale separation of thermal from viscous boundary layer (λ_{H2O}~0.6W/(mK))
- time separation of temperature and velocity fluctuations (different damping !!!!)
- different bubble transport/interaction mechanisms
- scale separation of velocity field and surface statistics (high retarding moment) (σ_{H2O}~52mN/m))
- velocity field modification by strong fields due to ($\vec{v} \times \vec{B}$) (Magnetohydrodynamics)
- measurement access by electromagnetic means
- pumping (MHD-Pumps) and/or flow control
- no optical access
- \Rightarrow wide operational temperature threshold (ΔT)
- alkali metals with Group V, VI,VII elements
- exotherm. reactions
- heavy metals weak reactions with Group V-VII but
- dissolution transitional metals (structure materials !!!)

What ?

(v_{H2O}~10-6m²/s)

How to measure in liquid metals ?

- **Flow rate** electro-magnetic, Δp , UTT, momentum based
- Visualization techniques
 - direct X-Ray tomography
 - indirect CIFT, Utra-sound-transient time (UTT),....
 - Pitot-Tube (Δp)
 - magnetic potential probes (MPP)
 - fibre-mechanics

How?

Non-intrusive – Ultra-sound doppler velocimetry (UDV), multi units mapping

Surfaces /2-phase

Velocity

direct

- direct resistance probes
- Indirect X-ray, UTT
 - optic means for surfaces

Measurement: Flow rate-EMFM

Conds. : PbBi tube flow, T_0 =200°C, Pr=0.02, d=60mm, I_0 =410mA

Other designs

clamp on systems

Design wishes

- High penetration depth δ of field *B* into duct (\Rightarrow low *f f* = frequency AC current supply)
- High magnetic field strength (high $\Delta \Phi_{RMS}$)
- Large amount of windings ($\sim n$ *n*=wire turns)

Counter arguments

© H7D

- Low f yield high sensitivity to ambient stray signals
- High *B* modifies the flow Hartmann number Ha <<1 (Ha = (EM-forces/viscous forces))

$$Ha = d \cdot B \sqrt{\frac{\sigma}{\rho v}}$$

How ?

Too large f yield skin-effect

Measurement: flow visualization- 2 phase-flow

Main feature:

- X-ray visualization of two-phase flows
- Restriction of the mold size in beam direction
 Example : LIMMCAST @ HZDR

How?

Measurement: flow visualization- 2 phase-flow

Measurement : Flow velocity

Ultra-Sound Doppler Velocimeter (UDV)

Principle (particle tracking)

- Distance change from sensor due to motion from 1→2 between two pulses.
- Determination of the time difference from the phase shift between received echoes
- Velocity at a discrete distance

Profile

- Separation of sound path in time intervals (gates ∆t) allows recording of a velocity profile. Therefore,
 - Coupling of a time t_i with a measurement position
 - Determination of the local velocity u_i in the interval i

Measurement : Flow velocity

Ultra-Sound Doppler Velocimeter (UDV)-Validation

- Good agreement between measurement and literature profile
- Detailed resolution of the velocity profile
- Deviation literature profile for r/R>0.6 less than 0.5%
 (Schulenberg&Stieglitz, NED, 2010)

Measurement: Flow velocity

Transient start-up behaviour of EM pump in THESYS Loop

Ultra-Sound Doppler Velocimeter (UDV)

- Fluid temperature: 400°C
- Temperatur compensation durch (Wave Guide)
- Inclination angle: 45°
- Tube diameter: 60 mm

Measurement- flow mapping

- Multi- UDC set-up
- Contactless-inductive flow tomography (CIFT)

CIFT - Principle

- Measurement of induced magnetic field (Hall-sensors) at given
- prescribed magnetic field
- numeric reconstruction

Measurement: Free surface detection

Optical method - Double-Layer-Projection (DLP) Features:

- Color encoding (error estimate, filtering, cross-correlation)
- Scanner (point, line and area acquisition)
- High speed camera

Dynamics of transport in liquid metals

Momentum transfer: numerical approach

- At a first glance simple: put numerous cells (fluid, solids) in SA geometry
- But: with tremendous effort (correction terms) successful for low Re by CFD means

Example : Fluid assembly Flow (heated rods)

Momentum trans		umerical approa Is based on averaging		Why ? Karlsruher Institut für Technologie
standard	Order	isotropic turbulent transport	anisotropic turbulent transport	No. of transport equations
	1 st	Gradient models, edd		
		<i>l</i> mixing length models	l_i mixing length models	0
in development		<i>k-l,k-ε, k-</i> ω, SST, etc.		1,2,
		non-linear k - ε , V2- f and	2	
			ASM models with <i>k</i> -ε	2
	2 nd	transport equations		
			equations for complete shear stress tensor	6+2
<u>Large Eddy S</u> imu <u>Direct Numerical</u> Example: Backwar	<u>S</u> imulatior		u/u_0	0.2 0.4 0.6 0.8 1

Turbulent momentum transfer: numerical approach

- Quality of CFD computations not defined by number of cells
 Reynolds averaged modelling of momentum transport
- Reynolds-Averaged Navier-Stokes (RANS) equations
 closure problem in

$$\frac{\partial}{\partial x_i} \left(\overline{u_i} \cdot \overline{u_j} + \overline{u_i' \cdot u_j'} \right)$$

- Standard model assumption: gradient hypothesis
- Simplification = isotropic exchange coefficient

General

- Turbulent flow modelling demands qualified user (rather than computing power)
- No substantial difference of liquid metals to ordinary liquids in bounded flows

Why?

convective term

31

Energy transfer: numerical approach

Turbulent energy equation

$$\rho c_p \left(\frac{-\partial \overline{T}}{\partial x} + \frac{-\partial \overline{T}}{\partial y} \right) = -\frac{\partial}{\partial y} \left(-\lambda \frac{\partial \overline{T}}{\partial y} + \rho c_p \overline{v'T'} \right)$$

- Analogous to turbulent viscosity $\varepsilon_M = \mu_t / \rho$ a turbulent heat flux appears and thus
- a turbulent eddy heat diffusivity $\varepsilon_H = \lambda_t / (\rho c_p)$ can be defined,
- the turbulent Prandt number Pr_t

$$Pr_{t} = \frac{\varepsilon_{M}}{\varepsilon_{H}} = f\left(Re, Pr, \frac{y}{R}\right) = \frac{\overline{u v}}{\overline{v'T'}} \frac{\partial T}{\partial y}}{\frac{\partial u}{\partial y}}$$

Consequences

- Pr_t is far of being a constant (in reality a tensor)
- Difficult to measure directly, since it is a measure of
 - dimensions and
 - available sensor sizes as well as the
 - temporal resolution)
- Involves several modelling problems
- Hydraulic diameter concept is not valid (except for forced convection)

Energy transfer: numerical approach

How to solve the closure problem of the turbulent heat flux?

Standard approximation: Gradient hypothesis

$$\overline{u_i' T'} = -\varepsilon_H^i \frac{\partial T}{\partial x_i} \longrightarrow \overline{u_i' T'} = -\varepsilon_H \frac{\partial T}{\partial x_i}$$

enforced isotropic exchange coefficient $\varepsilon_{\!_H}$

Reynolds – Analogy (Standard in all CFD-Codes)

$$\overline{u_i' T'} = -\varepsilon_H^i \frac{\partial T}{\partial x_i} \approx -\frac{\varepsilon_M}{Pr_t} \frac{\partial T}{\partial x_i} \quad \text{with} \quad Pr_t = \frac{\varepsilon_M}{\varepsilon_H}$$

tensor constant

- Consequences & typical problems (CFD Simulation with standard Pr_t =0.9)
 - *u* and *T*-Statistics completely different, Pr_t is function of $Pr_t = (y, Re, Pr, Gr)$
 - no anisotropic diffusivity
 - Missing transport characteristics (diffusor, recirculation flows, free jets)
 - Zero-dimensional approach is problematic only valid for forced convection (otherwise extremely qualified user required)
 - Use of more cells and computing will not help only modelling

Energy transfer: numerical approach

Direct numerical Simulation (DNS)

- only chance to obtain transport coefficients but
- limitation of Reynolds number (flow velocity)
- Formulation of benchmark problems

Backward facing step

- Stratification problem (buoyancy) at large axial ΔT
- Flow separation at geometry discontinuities

Approach

- Choice of small Pr-Fluid (Pr_{Sodium}=0.007)
- LES u-Field is DNS of T-Field

Goal

- Validity limits of CFD codes.
- Development of advanced turbulent heat flux models.
- Reliability threshold of design correlations.

Energy transfer: Validation

Background : Pin single element of fuel assembly

- : Turb. heat transfer in forced, mixed and buoyant convective flows ($Re \rightarrow 6.10^5$)
 - Development of models for turbulent heat flux;
 - Determination of *Nu*-correlations;
 - Evaluation of transitional regimes (model validity).

Scope

Measure:

Why ? Energy transfer: "real world" Observation: -high heat conductivity λ 30 -•• Experiment 25 — Calculation $z/d_r = 22,6$ 20 heated rod $\Delta T[^{\circ}C]$ r 15 u_0 10 5 -0 20 0 5 10 15 25 30 Conds: *r*[mm] $Re = 3.1 \cdot 10^5$, q "=40W/cm², PbBi @ T_{in} =300°C heated length 0.15 $\Theta = \Delta T / (q^{"}, d / \lambda) = N u^{-1}$ u_0 $\Delta T [^{\circ}C]$ 0.10 70 60 50 0.05 40 35 Experiment Calculation 25 wall-interface-T 0.00+ u_0 15 15 10 20 25 0 5 30 5 0 0 $z/d_{r}[/]$ R. Stieglitz et al.

IFMIF-type target FAIR-type target Myrrah-type target Water u_0 =2.5 m/s Lithium jet **Deuteron Beam** neutron Low Flux (7.5L) Medium Flux (6L) High Flux (0.5L) Nozzle outlet 0°z 22.5°-45°-Na *u*₀=2.5 m/s **NR**

Appearance:

Gas bubbles in flow (process engineering, in reactors,)

Liquid metals and free –surfaces

- Metal casting Nuclear targets

Free surface flows

Numerical challenges

- Different **statistics** of *u* and *h*-field (damping times/diffusion times).
- Large **density differences** between liquid and gas phase ($\rightarrow \infty$ for vacuum).
- **Coupling** of turbulent *u*-field with *h*-field (lack of adequate models: e.g. level-set methods)
- **Scale separation** of *u* and *h* (viscosity<<surface tension)
- Potential phase transition requires LM adapted cavitation models.
- Flow mostly **transient** \Rightarrow time step given by *p* and *u*-fluctuations.
- Complex geometries of induce secondary flows (e.g. edges, curved planes) leading to large computation times.

Experimental challenges

- Development of free surface detection sensors with high temporal & spatial resolution
- Lack of experiments with simultaneous u and h-field measurements (unknowns statistics and diffusion times)

Free surface flows- Phenomena

Observations

- Surface tension contracts the stream
- Shear stress/surface tension in causes inversion of jet (twist)
- At discontinuities capillary waves are generated.

Turbulent free surface flows- Validation

ADS Windowless Target: 2nd Generation (MYRRHA)

Experiment : Water

Experiment : Pb⁴⁵Bi⁵⁵ (top view) Experiment : Pb⁴⁵Bi⁵⁵ (side view)

Free surface flows- Validation

Example:

 Wave propagation on a liquid lithium surface caused by precipitation at the nozzle exit (Kondo et al. (2006) Osaka University)

Results

- Excellent agreement of numerical and experimental data for large scales
- LES allows resolution of fine structure

Free surface flows- Validation

Target development FAIR:

- Acceptable agreement of steady state "mean" surface shape
- Convective instabilites can be captured by RANS methods
- Local unsteady phenomena require an LES

Example: sodium jet u_0 =2,5m/s

PhD Gordeev,2008;

Daubner, Stoppel, & KALLA DIRAC-Final Report, 2009

High speed cam. (2000fps)

Free surface flows- Phenomena

What happens for a free jet impinging on a surface ?

- splashing by momentum exchange
- Droplet generation generation
- Cavitation ?

Example: IFMIF –lithium flow entering the catcher

lithium jets with different u_0 =5,15m/s , p=10⁻³Pa

 $u_0 = 5 {\rm m/s}$

Interaction with magnetic fields - MHD-flows

NR

Interaction with magnetic fields - MHD-flows

Major phenomena

- Highly electr. conducting walls \Rightarrow high current densities \Rightarrow large Δp
- thin conducting walls

 current density reduction
 M-shaped velocity profiles
 (high jets <t walls || B)
- Electrically coupled ducts → superposition of currents → large scale current
 circulation → multi-channel effects (even larger Δp)
- Best in terms of velocity profile and Δp electrically insulated walls $\Rightarrow \Delta p \sim B$ are (neutron resistance ??)

Engineering: LM-Pumps

Liquid metal operated loops utilize often MHD-pumps, why ?

- Low maintenance costs (absence of sealings, bearings, moving parts),
- Low degratation rate of structure material,
- Simple replacement of inductor,
- Fine regulation of flow rate and pump characteristics (p'/p, V'/V << 1).
- Computations: Electrodynamics + MHD (Stieglitz, FZKA-6826)

Engineering: LM-Pumps

Sodium operated Annular Linear Induction Pump (ALIP)

- $Q \text{ at } \Delta p$ 150m³/h ...0.2MPa
- 115°<*T*<500°C

Engineering - Pumps

Development of new pump types at KIT (ACHIP -<u>A</u>lternating <u>C</u>urrent <u>H</u>elical <u>Induction Pump</u>)

collector

stator

rotatin<u>g</u> soft iron core

^{, active} stator length

Motivation

- High price of EM-pumps, no competition
- Inspection, sealings
- complex set-up and loop integration

<u>Ansatz</u>

- Use of stator of asynchroneous motor (e.g. old pump, crane motor,....)
- design of liquid metal duct in stator
- Compensation of eddy current losses by rotating soft iron core (in bearings)

Advantages

- Low construction price (1/10 to EM pump)
- No sealings, conventional parts, pumpin in both directions possible

.1.

• High reliability low pressureoscillations ($\Delta V/V$, $\Delta p/p << 10\%$)

Engineering - Pumps

Functional and performance tests of ACHIP

- Successful operation
- First shot : acceptable efficiency η_{max} =14% no optimization
- Next optimization
 - instead soft iron permanent magnets,
 - •Use of 4 pole instead of 2 pole stator
- Resonable agreement between model and FOAK demonstrator

NaK pump in MEKKA @KIT

Engineering - Materials

Build ?

Material selection: Example : Depends strongly on liquid Heavy liquid metal (here Pb⁴⁵Bi⁵⁵)

420°C / 4000 h 20KV 1000 X 1.4979 original 420 °C 4000h 10000 onset of 9000 corrosion 8000 7000 6000 5000 4000 3000 2000 1000 0 500°C 550°C 600°C

Material

Austenitic steel (316L-type) Influence of temperature on material compatibility *at optimal oxygen concentration 10⁻⁶ wt%* **Result**

Austenitic steels operable without protection for temperatures below 500 °C

Engineering - Materials

Material:

F/M steel (HCM12a -type)

Influence of temperature on material compatibility at optimal oxygen concentration 10⁻⁶ wt% Result

Martensitic steels operable below \leq 550 °C.

huge oxidation rate: up to 50 -100µm/10.000 h

and frequent spallation of oxide scale.

contamination of liquid metal

⇒ reduced heat removal capability $(\lambda_{M_3O_4} = 1W/mK)$

Summary

- Liquid metal flows exhibit features different to normal liquids due to their thermo-physical properties.
- Conventional computational fluid dynamics tools exhibit deficits in simulating MHD flows, heat transfer problems and free surface flows if not liquid metal adapted due to
 - Strong anisotropic turbulence due to geometry, heat load,....
 - Scale separation of the boundary layers BL (viscous BL<< thermal BL,...)
 - Deficits of adequate coupling of free surface with turbulence modeling
- Recent progress in measurement techniques enables access to rather complex flow phenomena.
- Development process allows to define generic experiments focussing to
 - develop more advanced physical models.
 - generate a data base, local correlations for design of complex systems.
- Each liquid demands a dedicated material study to ensure a safe life time performance especially in a nuclear environment

Authors thank especially to the Helmholtz funding through

