

Limits of First Wall and limiter PFCs in DEMO

Frederik Arbeiter (KIT), Julien Aubert (CEA), Tom Barrett (CCFE), Phani Kumar Domalapally (CV-Řež), Furkan Özkan (KIT) - **02.12.2014**, EFPW, Split.

Institut für Neutronenphysik und Reaktortechnik, Gruppe Messtechnik und experimentelle Methodik (INR-MET)

www.kit.edu

Heat loads on the First Wall (FW)

Simple maths on FW cooling / thermohydraulic

Simplified 1D, steady state

Necessary pumping power – substracts from net output !

3

$$P_{pump} \approx \frac{\dot{V}_{fl} \cdot \Delta p}{\eta_{pump}} \approx \frac{(\dot{m}_{i}^{3}) L_{pf} \cdot f}{\rho_{fl}^{2} \cdot 2d_{h}A_{c}^{2} \cdot \eta_{pump}}$$

Maximum (outlet) coolant temperature

$$T_{mf,2} = T_{mf,1} + \frac{(\dot{q}_w + \dot{q}_b) \cdot (L_{pf} \cdot w_{pf})}{\dot{m}_i \cdot \overline{c}_p}$$

Maximum plasma-facing wall temperature

$$T_{w,p,\max} = T_{mf,2} + \frac{\dot{q}_w}{h_{wf}} + \frac{\dot{q}_w}{\lambda_w / t_w}$$

heat transfer heat conduction fluid - wall inside wall $h_{wf} \propto \dot{m}_i^{0.8}$

 \dot{m}_i Mass flow rate in single channel $T_{mf, 1/2}$ Bulk fluid temperature at inlet / outlet λ_w Heat conductivityof wall material

Simple maths on FW mechanics • Temperature gradient induced bending stress \dot{q}_{w} $T_{w,p} = T_{w,fl} + \Delta T$ $T_{w,fl}$ $\sigma_{b,DT} = \frac{1}{2} \cdot CTE \cdot E \cdot \frac{\Delta T}{1-\nu}$ $= \frac{1}{2} \cdot CTE \cdot E \cdot \frac{\dot{q}_{w} \cdot t_{w}}{(1-\nu) \cdot \lambda_{w}}$ CTE Coefficient of thermal expansion E Young's modulus ν Poisson ratio λ_{w} Heat conductivity

Pressure induced bending stress (rect. channel)

$$\sigma_{b,IP} = \frac{\beta_1 \cdot w_{cc}^2 \cdot p_i}{\left(t_w^2\right)} , \beta_1 = 0.5$$

Both stresses act aligned at the channel sides:

- compression near plasma,
- *tension near cooled face*

Range of real material data

(Data at 400°C)	9%Cr RAFM (Eurofer, F82H)	Tungsten (Plansee)	Copper alloys (CuCrZr-IG)
Thermal conductivity	29 33 W/m/K	135 W/m/K	352 W/m/K * * dep. on grade
Heat capacity pc	5.12 J/K/cm ³	2.70 J/K/cm ³	~3.3 J/K/cm ³
Coeff. of therm. expansion	11.7 µm/m/K	4.3 µm/m/K	18.2 µm/m/K
Young Modulus E	197 GPa	380 GPa	109 GPa
Poisson ratio ν	0.3	0.28	0.34
Yield stress S _{y,min}	416 MPa	420 MPa 100 (after recryst.)	189 MPa
S _m	154 MPa		80 MPa
Temperature window w/ irrad.	> 300-350°C < 550°C	> 600-800°C < 1150-1300°C	> 250-285°C < 300-350°C

Other candidates: Vanadium, SiC/SiC_f, CuNiBe, TZM, W-Cu composites ...

Material temperature window (Example: Eurofer)

Eurofer, DEMO-ISDC

Gaganidze et al. 2007

Materials have a temperature window:

- lower limit defined by DBTT (shift by irrad.)
- upper limit : Strength (S_v, S_r)

... even more constraints

- The FW cooling has to integrate with other component (Breeder zone, Divertor) cooling systems and finally BoP, which needs high temperature sources for high efficiency (See more details EPFW-Talk by L.V. Boccaccini)
- The FW materials should not perform too bad concerning decay heat and activation (Effect on remote handling and disposal)

7

Example analyses

Thermal analysis examples:

Base-case values: He @ 80bar, 500kW/m² h(50g/s) = 4858 W/m²/K L_{pf} = 1000mm w_{pf}=20mm "EF" : Eurofer, "Cu" : CuCrZr-IG

Stress analysis examples:

Summative stresses from internal pressure and thermal gradient are evaluated:

Optimum for cover wall thickness exists.

Case	T _{m1} [°C]	T _{m2} [°C]	∆T _{wf} [K]	∆T _w [K]	T _{wmax} [°C]
50g/s, 3mm EF	300	345	103	48	495
100g/s, 3mm EF	300	322	59	48	429
150g/s, 3mm EF	300	315	43	48	405
100g/s, 3mm <mark>Cu</mark>	300	322	59	4	385

Institute for Neutron Physics and Reactor Technology

Creep-Fatigue failure

Blanket and divertor components work under high thermo-mechanical loading. Creep-fatigue is one of the main failure modes.

Creep-fatigue damage criteria	ТВМ	DEMO
Pulse number	30'000	20'000 (2 nd blanket)
Pulse length	400 s	2h
Coolant pressure	80 bar	80 bar
FW design and temperature		comparable

Creep fatigue assessment (Aktaa et. al)

Accompant Critoria	Conservatism	Mat. Properties for Eurofer		
Assessment Chiena		TBM	DEMO	
ASME – elastic rules	Very high	available	Not available	
ASME – inelastic rules	High	available	Not available	
Aktaa – UMat Model	Normal	available	Available but to be verified by experimental results	

Application of UMat model in TBM: Influence of hold time on damage

In addition to simple $3S_m$ rules creep-fatigue assessment should be considered for DEMO and TBM design determining allowable number of cycles.

Design example A : Helium cooled FW (HCPB or HCLL, KIT/CEA)

HCPB TBM v2.1 llić et al. 2013

DEMO HCPB DEMO HCLL Carloni et al. 2013 Aiello et al. 2013

FW.BU

	HCPB-TBM v2.1	HCPB 2013	HCLL 2013
Flow rate	110.8g/s, 84.6m/s	49g/s, 80m/s	73.9g/s, 80m/s
heat flux density	500kW/m ²	500 kW/m²	500 kW/m²
PF length x width	2x 1290mm x 20mm	1006mm x 20mm	1512mm x 20.2mm
Tmf1, Tmf2	300°C → 360°C	300°C → 330-340°C	300°C → 372°C
heat transfer coeff.	6129 W/m/K @Rz20µm	5950 W/m²/K	5569 W/m²/K
pressure drop (*)	0.16 MPa	0.04 MPa	0.15 MPa
peak temperature (*)	539°C	488°C	521°C

(*) different calculation approaches / definitions may have been used

Study 2013 : Increase HTC

→ Effect of rib roughness or mixing devices was assessed by CFD

Extrapolated heat flux limit

Smooth surface, 3mm EF cover, T_2 =360°C, T_{max} =550°C:

Heat Flux	0.5 MW/m²	0.75 MW/m²	1.0 MW/m²
Coolant flow rate	74 g/s	154 g/s	293 g/s
Pressure drop gradient	0.09 bar/m	0.4 bar/m	1.43 bar/m
pumping / removed heat	0.96 %	6.0 %	32 %

Ribbed surface, 3mm EF cover, T_2 =360°C, T_{max} =550°C:

Heat Flux [MW/m²]	0.5 MW/m²	0.75 MW/m²	1.0 MW/m ²
Coolant flow rate	33 g/s	70 g/s	132 g/s
Pressure drop gradient	0.05 bar/m	0.23 bar/m	0.84 bar/m
pumping / removed heat	0.25 %	1.5 %	8.5 %

Ribbed surface, 1.5mm EF cover, T_2 =360°C, T_{max} =550°C:

Heat Flux [MW/m ²]	0.5 MW/m²	0.75 MW/m²	1.0 MW/m ²
Coolant flow rate	28 g/s	50 g/s	80 g/s
Pressure drop gradient	0.038 bar/m	0.12 bar/m	0.31 bar/m
pumping / removed heat	0.15 %	0.6 %	1.9 %

Design example B: Water cooled FW (J. Aubert et al., CEA)

- **<u>Eurofer</u>** as heat sink structural material.
- **Two separate cooling systems** per module (FW/BZ): For safety and coolant regulation.
 - **PWR conditions** : Tin / Tout = **285°C / 325°C** ; P = 155 bar. For efficient power conversion cycle
- Toroidal **counter current flow**.

Double Walled.

For reliability considerations from industrial feedback data base. To explore if needed or not !

 Water velocity < 8m/s and diameter of pipes > 5mm

To prevent excessive pumping power (and corrosion ?)

- Total thickness < 22 mm. To optimize TBR.
- 2 mm <u>W-armour</u> (not taken into account in calculations)

- Parametric generation of model
- 3D simulation of temperature and stress fields (Cast3M) for 2 load cases:
 - LC1 : normal condition :
 - Heat Flux, power deposition, 155 bar inside the tubes, 5 bar from the PbLi pool, end loads.
 - LC2 : faulted condition (pressurization of the box) :
 155 bar from the pbLi pool, end loads.
- Decision OK/fail:
 - Stress assessment acc. to RCC-MRx, Pm<Sm, Pm+Pb<1.5Sm, Pm+Pb+Q<3Sm
 - Eurofer max. temperature 550°C
 - Creep and irradiation neglected for this study

02.12.2014

WCLL FW Conclusions

Heat Flux [MW/m²]	0.5	1	1.5
Coolant Velocity [m/s]	2.8	4.9	7
Power removed by the FW / Total power in the blanket [%]	33	48	57
Ratio pumping power / Removed heat [%]	0.1	0.12	0.17

(The FW removes 100% of the Heat Flux + ~12% of the neutron deposition)

- Excellent capability for high heat fluxes.
- Low pumping power, but PWR conditions limit potential for high therm. efficiency
- Possible problem of corrosion and tritiation of water.
- Outlook: Include Creep, Fatigue and Irradiated matl. prop. in analyses.

A Corrosion of Eurofer with water !

A. Kanai et al. "Corrosion behavior of F82H exposed to high temperature pressurized water with rotating apparatus". (2013)

- > loss of 1μ m of steel with v = 2,3 m/s during 100 h. Should increase with velocity and time.
- + Effect of tritiated water ?
- = 1mm thickness in front of the plasma may be to thin > increase thickness > decrease Max HF ?!

Effect of Tungsten armour on FW structural integrity T. Barrett et al., CCFE)

- By FEA modelling, we can see that the presence of W Armour has a significant effect on FW structural stress
- We compare two thermal-structural models
 - 1. Baseline WCLL EUROFER FW
 - 2. WCLL EUROFER FW + 2mm W armour
- Looked at the change in thermal and structural response of EUROFER
- We find the W layer beneficially re-distributes some heat (peak temperature lower by ~5°C)
- Primary (pressure) stress is slightly improved by W armour
- Secondary (thermal) stress 3Sm reserve factor reduced by 20-70% * by presence of W armour
- Armour castellations and a compliant interlayer will help lower this stress, but clearly this effect must be considered in design studies

Design example C: hypervapotron FW/limiter (CV-Řež)

- In ITER hypervapotrons are foreseen in the FW.
- In the ITER FW CuCrZr is being used with low temperature coolant with a specified irradiation damage limit of 5.5 dpa.
- \rightarrow Very high heat transfer coefficients
- → Using Eurofer as heat sink instead of CuCrZr will cause the same difficulties as in the case of the FW.

Hypervapotron technology for FW/limiter

- Hypervapotrons might be considered for plasma limiter PFCs
- Using Eurofer as heat sink instead of CuCrZr will reduce the heat flux performance to 1-2 MW/m² (not attractive)
- An attractive hypervapotron design seems difficult to realize when using Eurofer in PWR condition

	ITER FW	DEMO limiter
Neutron damage	<5.5 dpa	~15 dpa/fpy
	Steel / CuCrZr structure with	Steel or CuCrZr structure with
Technology	Be-tiles,	castellated tungsten-armour,
	water-cooled	water-cooled
Operating pressure		5-8 MPa (CuCrZr)
	5-4 MFa [ITER FDD 2009]	15.5 MPa (Eurofer)
Coolont tomporature		~220°C (as in DEMO Cu-alloy divertor)
	70-100 C [ITER PDD 2009]	~300°C (Eurofer)
Heat flux	4 7 MM//m2	~5 MW/m² (CuCrZr)
performance	4./ IVIVV/III ⁻	1-2 MW/m² (Eurofer)

Conclusions

- High Heatflux FW/limiter designs can be produced
 - 5MW/m² hypervaporton (water) cooled / Copper
 - 1.5-2.5 MW/m² water cooled / Eurofer
 - 0.5-1.0 MW/m² helium cooled / Eurofer
- Uncertainty on wall heat flux must be limited
 - necessary safety factors evoke unattractive designs:
 (1) too much pumping power
 (2) too low outlet temperature for efficient electricity generation BoP
- Integrated optimization approach for FW must be followed
 - Material temperature windows
 - Complete stress assessment
 - Integration with BoP
 - ... also TBR, manufacturing, and other issues!