

New Electrode Materials for Li-Ion Batteries: Insertion Mechanisms and Li Ion Mobility

Sylvio Indris

Institute for Applied Materials – Energy Storage Systems Karlsruhe Institute of Technology

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

DFG

Hannover, May 19th, 2014

Li ion batteries: high energy density \rightarrow smaller devices

Tarascon et al., Nature 414 (2001), 359

Overview: Electrode materials

- $\begin{array}{lll} \bullet & \text{anodes} & & \text{Li}_4\text{Ti}_5\text{O}_{12} \\ & & \text{TiO}_2 \\ & & \text{SnO}_2, \, (\text{Ti/Sn})\text{O}_2, \, (\text{Al/Sn})\text{O}_2, \, (\text{Mg/Al/Sn})\text{O}_2 \dots \\ & & \text{ZnO} \\ & & \text{MnFe}_2\text{O}_4 \, , \, \text{MgFe}_2\text{O}_4 \quad , \, \dots \\ & & \text{Y}_2\text{Ti}_2\text{O}_5\text{S}_2 \qquad \qquad , \, \dots \end{array}$
- cathodes Li(Co/Ni/Mn/AI)O₂ 0.5 Li per TM 140 mAh/g $Li(Ni/Mn)_2O_4$ 0.5 Li per TM 150 mAh/g Li(Fe/Mn/Co)PO₄ Li₂(Fe/Mn)SiO₄ 1 Li per TM 170 mAh/g Li₂(Fe/Mn)SiO₄ 2 Li per TM ? 330 mAh/g? Li₂(Fe/Mn)TiO₄ , … 2 Li per TM ? 290 mAh/g?

Synthesis

Synthesis of Nanoparticles, Nanostructures and Nanocomposites:

- coprecipitation methods
- sol-gel synthesis
- hydrothermal/ solvothermal synthesis
- solid-state reaction
- electrospinning

\rightarrow electrode film preparation

Important Parameters

Application (e.g EV)

- range capability

- fast charging / accelaration
- long lifetime (>10 years)
- price / toxicity / safety

 \rightarrow Field test

Li-Ion Battery

- charge capacity measured in mAh/g
- cell voltage
- power density
- cycling behaviour
- price / toxicity / safety

 \rightarrow Battery tests

Electrode Material

- amount of Li inserted light elements for host
- redox potentials in anode, cathode
- fast Li diffusion
- reversibility of reaction high-rate behavior
- price / toxicity / safety

 \rightarrow NMR, in situ methods

Different cell types:

swagelok cells

coin cells (CR2032)

transmission cells In situ XRD / XAS at ANKA (+ Mössbauer)

pouch cells (*in situ* NMR)

Overview: Experimental Methods

Standard sample characterization XRD, SEM, TEM, ...

Battery tests

long-range structure, morphology

cell performance

Solid State NMR spectroscopy (MAS, VT, PFG, *in situ*, relaxometry)

Fe + Sn Mössbauer spectroscopy (*ex situ*, *in situ*)

In situ XRD measurements

In situ XAS measurements

Impedance Spectroscopy

In situ SEM

local structure (element-specific), dynamics

short-range structure, oxidation states

long-range structure

local structure (element-specific), oxidation states

interfaces, degradation

morphology

Mössbauer spectroscopy

changes of local structure and charge state of Fe or Sn during reduction and oxidation

discharge

charge

 Zn_2SnO_4

In situ SEM

(together with R. Mönig, KIT-IAM)

SnO_2

Particles grow and develop surface layers.
Mass contrast detected by backscattered electrons shows that coating has lower Z than SnO₂ particle; consistent with the assumption that Li₂O forms at surface of particles.

• Particles grow and break apart

- formation of Cu metal whiskers
- \rightarrow Cu-Li exchange mechanism

W. Bensch et al., Phys. Chem. Chem. Phys. 14, 7509 (2012).

MAS NMR spectroscopy ⁷Li, ⁶Li, ...

200 MHz spectrometer

1.3 mm rotors, 67 kHz rotation

small magnetic field (4.7 T) very fast sample spinning

- number of Li sites

- identification of Li sites (comparison with reference materials)
- exchange rates between sites (2D NMR)
- mobilities of different Li species (temperature dependence)
- direct measurement of diffusion coefficient (field gradients, ...)

Ion Dynamics in Condensed Matter

LiCoO₂: NMR at different charge states/cycle numbers

N. Schweikert et al., Solid State Ionics 226 (2012), 15.

In situ NMR Spectroscopy

- *in situ* observation of changes in local structure around specific probe nuclei
- elucidation of reaction mechanisms
- observation of side reactions

NMR probe with in situ cell

Ex situ ⁷Li MAS NMR Spectroscopy: $Li_{4+x}Ti_5O_{12}$ (*x* = 0 ... 3)

Rearrangement of Li ions:

 $Li^+ \rightarrow Li(16c)$

Li(8a) \rightarrow Li(16c)

H. Hain et al., Solid-State Nucl. Magn. Reson. 42 (2012), 9.

Ex situ NMR Spectroscopy:

relaxation rates

<u>2D ⁷Li MAS NMR:</u> $Li_{4+x}Ti_5O_{12}$

⁷Li: 93 % ⁶Li: 7 %

jump rates between specific sites, here: 16d \leftrightarrow 16c ?

H. Hain et al., Solid-State Nucl. Magn. Reson. 42 (2012), 9.

<u>LiFePO₄</u> : coating with C from different precursors

Hydrothermal synthesis \rightarrow nanostructures: nanoparticles with C coating !

2 phase mechanism (1 step)

<u>LiFePO₄ \leftrightarrow LiCoPO₄:</u>

<u>LiCoPO₄</u> : *in situ* XRD

30 – 200 sec per scan

8.4

8.2

9.6

8.8

20 (deg)

8.4

9.2

8.6

8.8

 2θ (deg)

9.0

9.2

9.4

9.6

2-step mechanism + intermediate phase $(\neq Fe)$

cell voltage (V)

intensity (a.u.)

LiCoPO₄

view along c axis

view along c axis

 $CoPO_4$

view along c axis

<u>LiCoPO₄</u> : *in situ* XAS on Co K edge

highly reversible oxidation/reduction of Co^{2+/3+}

Li₂Fe_{1-v}Mn_vSiO₄ / C

- sol-gel synthesis
- nanocrystalline powders with carbon coating
- high capacity + high voltage possible (2 Li⁺ per TM ?)
 → high energy density
- flexible silicate network
- different polymorphs, isolation possible

(a) *P*2₁/ *n*

(b) *Pmnb*

R. Chen et al., J. Phys. Chem. C 117 (2013), 884.

Li₂Fe_{1-y}Mn_ySiO₄ / C

R. Chen et al., J. Phys. Chem. C 117 (2013), 884.

 $Li_2Fe_{1-y}Mn_ySiO_4 / C$

y = 0.2

R. Chen et al., J. Phys. Chem. C 117 (2013), 884.

 $Li_2Fe_{1-v}Mn_vSiO_4$ ⁷Li MAS NMR

R. Chen et al., J. Phys. Chem. C 117 (2013), 884.

$Li_2Fe_{1-y}Mn_ySiO_4$

Fe Mössbauer spectroscopy

R. Chen et al., J. Phys. Chem. C 117 (2013), 884.

in situ XAS

y = 0.5

R. Chen et al., J. Phys. Chem. C 117 (2013), 884.

*µ*d / а.u.

*µ*d / a.u.

LiFeTiO₄

(together with M. Knapp, M. Yavuz)

R. Chen, S. Indris, EP 13401030, 2013.

Ionic liquids as electrolytes (together with M. Schulz, KIT-IAM)

cycling with NMC + Li

Electrolytes: transference numbers \rightarrow Field Gradient NMR (together with M. Schulz, KIT)

Ζ

 $Li_{1.6}AI_{0.6}Ti_{1.4}(PO_4)_3$ and $Li_{1.6}AI_{0.6}Ge_{1.4}(PO_4)_3$

LAGP

(together with M. Rohde, IAM-AWP)

D = ℓ^2 / 6τ = 10⁻¹¹ m²/s (at 400 K) σ_{Li} = 3.6 mS/cm

 α -Li₃FeF₆

(together with J. Binder, KIT-IAM)

0

-200

⁵⁷Fe Mössbauer

CeO₂ doped with Ta and Ti/Ta

(together with J. Janek, Uni Giessen)

Conclusions

- observation of reaction mechanisms at components and interfaces during Li insertion/removal
- understanding function and degradation of materials/cells

LiCoPO ₄ :	 reversible phase transformation with intermediate phase LiCoPO₄ ↔ Li_{0.7}CoPO₄ ↔ CoPO₄ two-step mechanism, both steps: two-phase reaction highly reversible oxidation/reduction Co²⁺ ↔ Co³⁺ intermediate Li_{2/3}CoPO₄ degradation of electrolyte?
Li ₂ (Fe/Mn)SiO ₄ :	 preparation of nanocrystalline materials with C-coating Fe: single polymorph, Fe/Mn: mixture of polymorphs highly reversible oxidation/reduction Fe²⁺ ↔ Fe³⁺ Mn²⁺ ↔ Mn³⁺ high degree of structural disorder after cycling
Ionic liquid electrolytes:	(σ_{dc}) PFG-NMR \rightarrow Li diffusion

Thanks

Marco Scheuermann Ruiyong Chen Maximilian Kaus Krystyna Bachtin Christof Dräger Nilüfer Kiziltaz Yavuz

Ralf Heinzmann Ibrahim Issac Holger Hain Nina Schweikert Sebastian Becker Linda Wünsche

DFG

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Impedance Spectroscopy: Internal Interfaces \rightarrow degradation

Li/LTO

Determination

- SOC
- SOH

N. Schweikert et al., Solid State Ionics 226 (2012), 15.

<u>Impedance Spectroscopy: Internal Interfaces → degradation</u>

Galvanostatic cycling: No changes

N. Schweikert et al., Solid State Ionics 226 (2012), 15.

Li dendrite growth

N. Schweikert et al., J. Power Sources 2269 (2013), 149.

Impedance Spectroscopy:

Li dendrite growth

0.5 M LiPF₆ in EMIM-TFSI

0.5 M LiPF_6 in EMIM-TFSI/PC

0.5 M LiPF₆ in EMIM-TFSI/EC

1 M LiPF₆ in EC/DMC

N. Schweikert et al., *J. Power Sources* **2269** (2013), 149.

⁷Li In situ NMR:

Li dendrite growth

symmetric Li-Li cells

suppressed dendrite growth for LiPF₆ in EMIM-TFSA

good agreement with impedance data, SEM, and in situ NMR

N. Schweikert et al., J. Power Sources 2269 (2013), 149.