

Li-Ionen-Dynamik in Kondensierter Materie: Vom Einkristall bis zu Li-Ionen-Batterien

Sylvio Indris

Institute for Applied Materials – Energy Storage Systems Karlsruhe Institute of Technology

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

DFG

Münster, June 4th, 2014

Experimental Techniques:

Materials Science, Energy Storage/Conversion, Geoscience (Li-Ion Batteries, SOFC, Catalysis, ...)

Research Topics

NMR techniques

- MAS NMR (⁷Li, ⁶Li, ¹H, ²H, ²⁷Al, ²⁹Si, ¹¹⁹Sn, ...)
- Single crystals
- VT-NMR, lineshape analysis
- 2D exchange NMR
- Field-gradient NMR (SFG/PFG)
- In situ NMR on complete battery cells
- Relaxometry
- β-NMR

MAS NMR spectroscopy ⁷Li, ⁶Li, ...

- number of Li sites
- identification of Li sites (comparison with reference materials)
- exchange rates between sites (2D NMR)
- mobilities of different Li species (temperature dependence)
- direct measurement of diffusion coefficient (field gradients, ...)

Ion Dynamics in Condensed Matter

LiAIO₂ Single Crystal

Reinhard Uecker, IKZ Berlin

(isotopically pure ⁷Li)

space group $P4_12_12$ *a* = 5.189 Å, *c* = 6.268 Å

LiAIO₂ Applications

- Substrate for epitactic growth of III-V-type Semiconductors (e.g. GaN)
- Fusion and Tritium Breeder Reactors
- Coating in Electrodes for Li-Ion Batteries
- Additive in Composite Polymer Electrolytes

LiAIO₂ :

B. Roling

Microscopic and Macroscopic Diffusion Quantities

Einstein-Smoluchowski

Jump rate

$$\tau^{-1} \cdot \frac{\ell^2}{6} \cdot f = D^{\mathrm{T}}$$

Tracer diffusivity

Nernst-Einstein

Conductivity σ

$$\cdot \cdot \frac{k_{\rm B}T}{Nq^2} \cdot H_{\rm R} = D^{\rm T}$$

Temperature dep. $\Rightarrow E_A$ (depends on time window)

Zeeman Splitting + Quadrupolar Shifts

⁷Li NMR

Zeeman splitting quadrupolar shifts

⁷Li and ²⁷AI NMR on LiAIO₂ Single Crystal

⁷Li NMR on LiAIO₂ Single Crystal

Electric field gradient tensor

$$V_{ij} = d^2 \phi / dx_i dx_j$$

Eigenvalues? Eigenvektors?

3-parameter fit of EFG tensor

Indris et al., J. Phys. Chem. C 116 (2013), 14243.

293 K

623 K

673 K

723 K

773 K

823 K

923 K

1023 K

80

60

20

40

⁷Li and NMR on LiAIO₂: Motional narrowing

Hopping rate of 8 kHz at about 650K, $E_A \approx 1.0 \text{ eV}$

Indris et al., J. Phys. Chem. C 116 (2013), 14243.

⁷Li and NMR on LiAlO₂: T_1 relaxation time

 $E_{\rm A} \approx 0.7 \, {\rm eV}$ (from $\sigma : 1.2 \, {\rm eV} \rightarrow$ correlated motion)

Indris et al., J. Phys. Chem. C 116 (2013), 14243.

Indris et al., J. Phys. Chem. C 116 (2013), 14243.

Conclusion / Outlook:

 different NMR techniques have been applied to study Li diffusion in LiAlO₂ over about 7 decades for D, τ⁻¹

• good agreement with σ_{dc}

Li ion batteries: high energy density \rightarrow smaller devices

Tarascon et al., Nature 414 (2001), 359

Overview: Electrode materials

- anodes $\begin{array}{ll} \text{Li}_4\text{Ti}_5\text{O}_{12} \\ \text{TiO}_2 \\ \text{SnO}_2, \ (\text{Ti/Sn})\text{O}_2, \ (\text{Al/Sn})\text{O}_2, \ (\text{Mg/Al/Sn})\text{O}_2 \ \dots \\ \text{ZnO} \\ \text{MnFe}_2\text{O}_4, \ \text{MgFe}_2\text{O}_4 & , \ \dots \\ \text{Y}_2\text{Ti}_2\text{O}_5\text{S}_2 & , \ \dots \end{array}$

Synthesis

Synthesis of Nanoparticles, Nanostructures and Nanocomposites:

- coprecipitation methods -
- sol-gel synthesis -
- hydrothermal/ solvothermal synthesis -
- solid-state reaction -
- electrospinning -

\rightarrow electrode film preparation

Overview: Experimental Methods

Standard sample characterization XRD, SEM, TEM, ...

Battery tests

long-range structure, morphology

cell performance

Solid State NMR spectroscopy (MAS, VT, PFG, *in situ*, relaxometry)

Fe + Sn Mössbauer spectroscopy (*ex situ*, *in situ*)

In situ XRD measurements

In situ XAS measurements

Impedance Spectroscopy

In situ SEM

local structure (element-specific), dynamics

short-range structure, oxidation states

long-range structure

local structure (element-specific), oxidation states

interfaces, degradation

morphology

Mössbauer spectroscopy

changes of local structure and charge state of Fe or Sn during reduction and oxidation

discharge

discharge

charge

 Zn_2SnO_4

In situ SEM

(together with R. Mönig, KIT-IAM)

SnO_2

Particles grow and develop surface layers.
Mass contrast detected by backscattered electrons shows that coating has lower Z than SnO₂ particle; consistent with the assumption that Li₂O forms at surface of particles.

• Particles grow and break apart

- formation of Cu metal whiskers
- \rightarrow Cu-Li exchange mechanism

W. Bensch et al., Phys. Chem. Chem. Phys. 14, 7509 (2012).

LiCoO₂: NMR at different charge states/cycle numbers

⁷Li MAS NMR

N. Schweikert et al., Solid State Ionics 226 (2012), 15.

In situ NMR Spectroscopy

- *in situ* observation of changes in local structure around specific probe nuclei
- elucidation of reaction mechanisms
- observation of side reactions

Ex situ ⁷Li MAS NMR Spectroscopy: $Li_{4+x}Ti_5O_{12}$ (*x* = 0 ... 3)

Rearrangement of Li ions:

 $Li^+ \rightarrow Li(16c)$

 $Li(8a) \rightarrow Li(16c)$

H. Hain et al., Solid-State Nucl. Magn. Reson. 42 (2012), 9.

Ex situ NMR Spectroscopy:

relaxation rates

<u>LiFePO₄ \leftrightarrow LiCoPO₄:</u>

8.4

8.2

9.6

8.8

20 (deg)

8.4

9.2

8.6

8.8

 2θ (deg)

9.0

9.2

9.4

9.6

2-step mechanism + intermediate phase $(\neq Fe)$

cell voltage (V)

intensity (a.u.)

LiCoPO₄:

LiCoPO₄

view along c axis

Li_{2/3}CoPO₄

view along c axis

$CoPO_4$

view along c axis

<u>LiCoPO₄</u> : *in situ* XAS on Co K edge

highly reversible oxidation/reduction of Co^{2+/3+}

Li₂Fe_{1-v}Mn_vSiO₄ / C

- sol-gel synthesis
- nanocrystalline powders with carbon coating
- high capacity + high voltage possible (2 Li⁺ per TM ?)
 → high energy density
- flexible silicate network
- different polymorphs, isolation possible

(a) *P*2₁/ *n*

(b) *Pmnb*

R. Chen et al., J. Phys. Chem. C 117 (2013), 884.

Li₂Fe_{1-y}Mn_ySiO₄ / C

R. Chen et al., J. Phys. Chem. C 117 (2013), 884.

 $Li_2Fe_{1-y}Mn_ySiO_4 / C$

y = 0.2

R. Chen et al., J. Phys. Chem. C 117 (2013), 884.

Li₂Fe_{1-v}Mn_vSiO₄

⁷Li MAS NMR

R. Chen et al., J. Phys. Chem. C 117 (2013), 884.

$Li_2Fe_{1-y}Mn_ySiO_4$

Fe Mössbauer spectroscopy

R. Chen et al., J. Phys. Chem. C 117 (2013), 884.

in situ XAS

R. Chen et al., J. Phys. Chem. C 117 (2013), 884.

*µ*d / a.u.

*µ*d / a.u.

Ionic liquids as electrolytes (together with M. Schulz, KIT-IAM)

cycling with NMC + Li

200 F 200 F specific capacity (mAh/g) specific capacity (mAh/g) 150 150 1M LiPF₆ 1.3M Li-TFSI in EC/DMC in DMMA-TFSI/PC 100 100 H₃C CH_3 Ô C/5 C/20 C/10 C/5 C/20 C/10 50 50 DMC CH₃ EC ſ 0 2 12 12 6 8 10 2 6 8 10 14 4 14 4 Ö PC H₂C cycle number cycle number CH3 MPPyrr⁺ H₃C- CH_3 200 200 Ð Θ `СН₃ N specific capacity (mAh/g) specific capacity (mAh/g) CF3 150 150 F₃C ċн₃ ó 0.3M Li-TFSI ó 0.5M Li-TFSI $DMM\Lambda^{+}$ in MPPyrr-TFSI 100 100 in MPPyrr-TFSI/EC TFSI C/10 C/20 C/10 C/5 C/20 C/5 50 50 0 0 10 12 2 12 14 2 6 8 14 6 8 10 4 cycle number cycle number

Electrolytes: Diffusion coefficients \rightarrow Field Gradient NMR (together with M. Schulz, KIT)

 δ (ppm)

Ζ

Conclusions

- observation of reaction mechanisms at components and interfaces during Li insertion/removal
- measurement of Li ion mobility: τ^{-1} , E_A , D
- understanding function and degradation of materials/cells

LiCoPO₄:

- reversible phase transformation with intermediate phase LiCoPO₄ \leftrightarrow Li_{2/3}CoPO₄ \leftrightarrow CoPO₄
- two-step mechanism, both steps: two-phase reaction
- highly reversible oxidation/reduction $Co^{2+} \leftrightarrow Co^{3+}$

Li₂(Fe/Mn)SiO₄ :

- Fe: single polymorph, Fe/Mn: mixture of polymorphs
- highly reversible oxidation/reduction $Fe^{2+} \leftrightarrow Fe^{3+}$ $Mn^{2+} \leftrightarrow Mn^{3+}$
- high degree of structural disorder after cycling

Outlook

- Li-Ion Batteries, SOFC, PEM, ...
- Method Development: high temperature
 - tomography
 - electrophoretic NMR

NMR center: structure/dynamics/methods

Theory/Modelling: Ion dynamics electronic structures spin density

MEET:

electrodes/electrolytes for Li-ion batteries

Thanks

Marco Scheuermann Ruiyong Chen Maximilian Kaus Krystyna Bachtin Christof Dräger

Ralf Heinzmann Ibrahim Issac Holger Hain Nina Schweikert Sebastian Becker Linda Wünsche

DFG

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

