

New solutions for the OECD VVER-1000 LEU and MOX burnup computational benchmark

L. Mercatali¹, A. Venturini², V.H. Sanchez¹

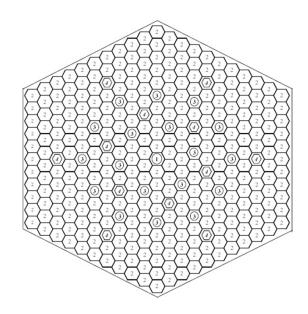
¹KIT- Institute for Neutron Physics and Reactor Technology University of Pisa (Italy)

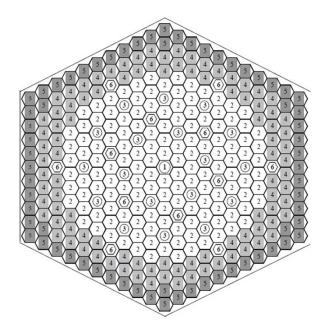
AAA Workshop (GRS – December 01, 2014)

Outline

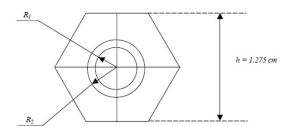
- Introduction & motivation
- The "OECD VVER-1000 LEU and MOX Assemblies Burnup Computational Benchmark"
 - 1. Modeling of the benchmark exercises
 - 2. Results
 - Monte Carlo & deterministic static solutions
 - > Burn-up results
 - \mathbf{k}_{inf}
 - Nuclide concentrations
 - > Pin-by pin fission rates
- Summary

Introduction & motivation


- The loading of <u>Mixed Uranium Plutonium OXide</u> (MOX) and <u>Low Enriched Uranium</u> (LEU) fuels in commercial nuclear reactors requires well validated computational methods and codes capable to provide reliable predictions of the neutronics characteristics of such fuels in terms of reactivity conditions (k_{inf}), nuclide inventory and pin power generation over the entire fuel cycle length
- Within the framework of Joint United States/Russian Fissile Materials Disposition
 Program an important task is to verify and validate neutronics codes for the use of
 MOX fuel in VVER-1000 reactors
- In this work new solutions for the (UO₂+Gd) and (UO₂+PuO₂₊Gd) fuel assemblies proposed within the "OECD VVER-1000 LEU and MOX Assemblies Burnup Computational Benchmark" have been produced
- The SCALE and SERPENT codes have been used with ENDF/B-VII and JEFF3.1 nuclear data libraries (NDLs)


OECD VVER-1000 burnup computational benchmark LEU/MOX assemblies

- The LEU assembly consists of low enriched fuel rods (3.7 wt %) and 12 rods poisoned with 4.0 wt % of gadolinium (3.6 wt % ²³⁵U)
- The MOX assembly contains fuel rods with three different plutonium loadings: the central region with 4.2 wt % of fissile plutonium (93 wt % ²³⁹Pu), two outer rings a 3.0 wt % and the outermost ring a 2.0 wt %

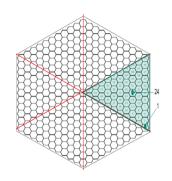


MOX

OECD VVER-1000 benchmark – specifications

S1 - S2: Poisons (Xe + Sm) effects

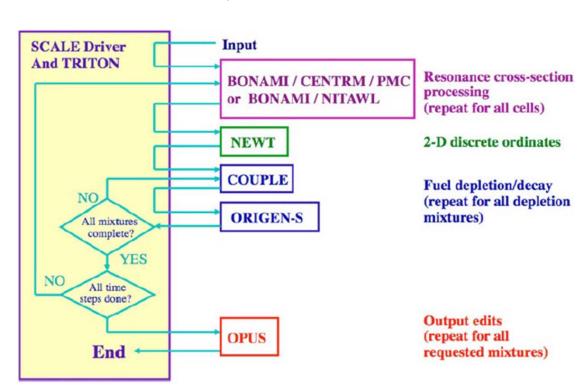
S2 - S3: Doppler coefficient

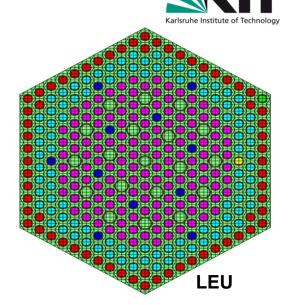

S3 - S4: Boron effect

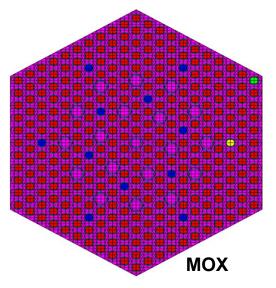
S4 - S5: Moderator temperature coefficient

Operational states

State	Fuel temp. K	Non-fuel temp. K	¹³⁵ Xe, ¹⁴⁹ Sm	Boron [ppm]	Moderator density [g/cm³]
S1	1027	575	Eq.	600	0.7235
S2	1027	575	0.0	600	0.7235
S3	575	575	0.0	600	0.7235
S4	575	575	0.0	0.0	0.7235
S5	300	300	0.0	0.0	1.0033

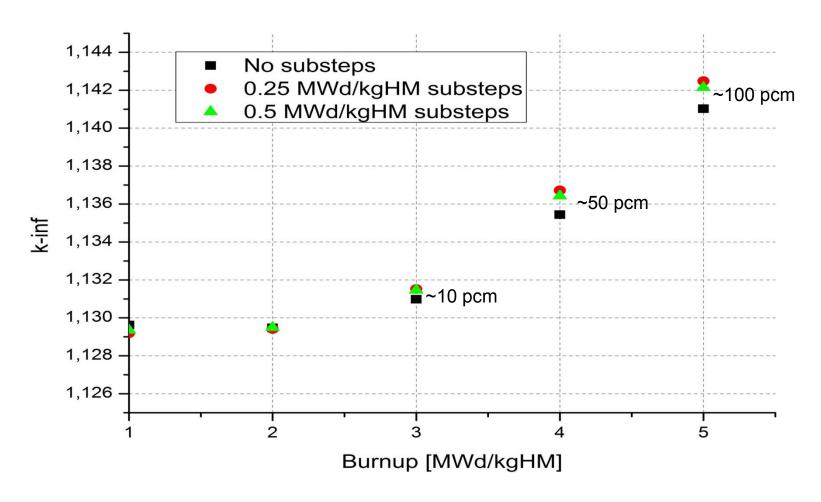

- Constant power density: 108 MW/m³
- Requested responses: k_{inf} for state S1 at each burn-up step
 - k_{inf} for states S2-S5 at 0, 20, 40 MWd/kgHM
 - Pin-by-pin fission rate distribution
 - Nuclide assembly average concentrations + nuclide average concentrations in cell 1 and cell 24 for ²³⁵U, ²³⁶U, ²³⁸U, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ¹³⁵Xe, ¹⁴⁹Sm, ¹⁵⁵Gd and ¹⁵⁷Gd





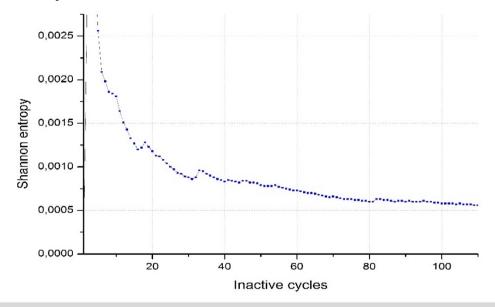
Modeling assumptions – SCALE 6.1

- Transport solutions (SN6)
- Boundary condition: white
- Convergence criterion (spatial/eigenvalue): ε=1E-6
- Predictor-corrector algorithms
- Cross-section library: ENDF/B-VII.0



LEU – sensitivity studies on burn-up steps

(INR)


Negligible effect of gadolinium mesh refinement (<20 pcm)

Modeling assumptions – SERPENT 2.1

- Solution of Depletion Equations: CRAM
- Predictor-corrector method (PC) vs Stochastic Implicit Euler (SIE)
- Pin-by-pin model
- Boundary condition: <u>reflective</u>
- Gadolinium refinement
- 10000 neutrons, 4000 cycles, 100 inactive cycles (Shannon enrtopy criterion)
- Tmp card (Doppler broadening) vs. Temperature weighted compositions (~200 pcm)
- Cross-section library: ENDF/B-VII.0, JEFF3.1, JEFF2.2

Monte Carlo solutions - k_{inf}

SERPENT and MCNP4B results for k_{inf} at zero burnup with JEFF2.2 data

LEU	SERPENT (S)	MCNP4B (M)	Δk (M-S)·10 ⁵
S2	$1.17987 \pm 8.9E-05$	1.1800 ± 6E-05	13
S 3	$1.19365 \pm 8.6E-05$	$1.1925 \pm 6E-05$	-115
S4	$1.25387 \pm 8.5E-05$	1.2531 ± 7E-05	-77
S5	$1.32394 \pm 7.6E-05$	$1.3235 \pm 6E-05$	-44
MOX	SERPENT (S)	MCNP4B (M)	Δk
IVIOX	SERFENT (S)	MCMF4B (M)	(M-S)·10 ⁵
S2	$1.19258 \pm 8.6E-05$	1.1922 ± 7E-05	-38
S 3	$1.20919 \pm 8.4E-05$	1.2091 ± 6E-05	-9
S4	$1.24408 \pm 8.5 E-05$	$1.2430 \pm 6E-05$	-108
S5	$1.32487 \pm 7.6E-05$	1.3256 ± 7E-05	73

- Objective: assess the validity of our model through comparison with the reference MCNP4B solutions
 - Overall good agreement
 - Small deviations due to different data (ENDF/B.V) for ¹⁶O, ¹⁵²Gd, ^{nat}Zr and ¹H in the MCNP4B results and different statistics

Monte-carlo and deterministic solutions - k_{inf}

SERPENT and SCALE results for k_{inf} at zero burnup with different NDLs

LEU	SERPENT (SJ)	SERPENT (SE)	SCALE (SCE)	Δk	Δk
	[JEFF3.1]	[ENDF/B-VII]	[ENDF/B-VII]	(SE-SJ)·10⁵	(SE-SCE)·10 ⁵
S2	$1.17399 \pm 8.9E\text{-}05$	$1.17587 \pm 8.8E\text{-}05$	1.17068	188	519
S 3	$1.18787 \pm 8.7E\text{-}05$	$1.18996 \pm 8.6E\text{-}05$	1.18557	209	439
S4	$1.24808 \pm 8.5E\text{-}05$	$1.24993 \pm 8.7 \text{E-}05$	1.24538	185	455
S5	$1.32088 \pm 7.6E\text{-}05$	$1.32305 \pm 7.7 \text{E-}05$	1.31770	217	535
МОХ	SERPENT (SJ)	SERPENT (SE)	SCALE (SCE)	Δk	Δk
	[JEFF3.1]	[ENDF/B-VII]	[ENDF/B-VII]	(SE-SJ)·10⁵	(SE-SCE)·10 ⁵
S2	$1.19596 \pm 8.5E-05$	$1.19762 \pm 8.6E\text{-}05$	1.19178	166	584
S 3	$1.21259 \pm 8.4E\text{-}05$	$1.21419 \pm 8.4E\text{-}05$	1.21005	160	414
S4	$1.24765 \pm 8.4E\text{-}05$	$1.24923 \pm 8.4\text{E-}05$	1.24491	158	432
S5	$1.32908 \pm 7.6E-05$	$1.33013 \pm 7.6E-05$	1.32652	105	361

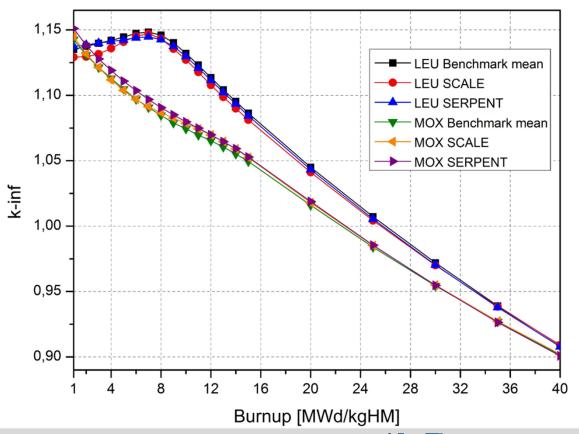
- Systematic under-prediction of JEFF3.1 with respect to JEFF2.2 (LEU)
- Systematic over-prediction of JEFF3.1 with respect to JEFF2.2 (MOX)
- ENDF/B-VII-k_{inf} larger with respect to JEFF3.1-k_{inf} by ~100-200 pcm
- SCALE results are systematically higher than SERPENT ones due to the multi-group and spatial approximations

Reactivity effects

LEU and MOX assemblies: $100 \times (k_{init.} - k_{fin.})$

Initial atata	Final state	Burnup	LEU			MOX		
Initial state		(MWd/KgHM)	SERPENT	SCALE	Mean	SERPENT	SCALE	Mean
		0	-3.58	_*	-4.03	-2.63	-	-3.33
S1	S2	20	-2.91	-	-3.96	-2.44	-	-3.44
		40	-2.37	-	-3.29	-2.16	-	-3.08
		0	-1.41	-1.48	-1.36	-1.66	-1.83	-1.74
S2	S3	20	-1.48	-	-1.52	-1.48	-	-1.55
		40	-1.35	-	-1.40	-1.33	-	-1.40
		0	-6.00	-5.98	-5.99	-3.50	-3.49	-3.46
S 3	S4	20	-5.40	-	-5.48	-3.76	-	-3.83
		40	-4.81	-	-4.91	-3.86	-	-3.98
		0	-7.28	-6.98	-6.90	-8.09	-8.16	-7.93
S4	S5	20	-6.87	-	-6.72	-6.98	-	-7.03
		40	-4.35	-	-5.33	-5.49	-	-5.41

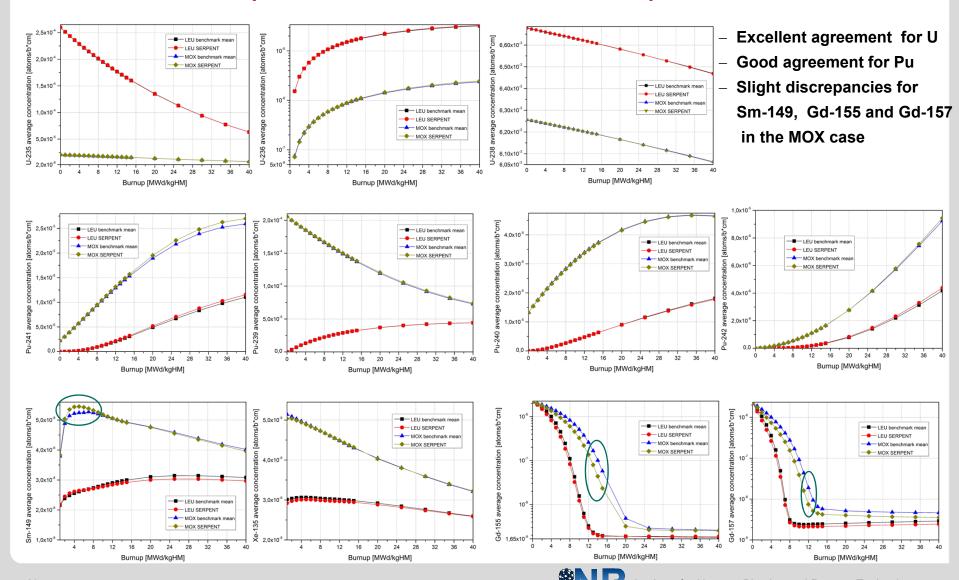
- Due to the harder neutron spectrum of the MOX assembly:
 - Xenon effect lower in MOX, the difference becoming less important with the increasing of burnup
 - Boron worth reduced in MOX. Difference: ~71% (BOC) ~24% (EOC)
- Doppler coefficient slightly more negative for the MOX at BOC and almost equals at EOC
- Moderator temperature coefficient more negative in the case of MOX


Burn-up calculations - kinf

- The decrease of k_{inf} is slower for MOX
- Different shapes of the burn-up swings due to different spectra

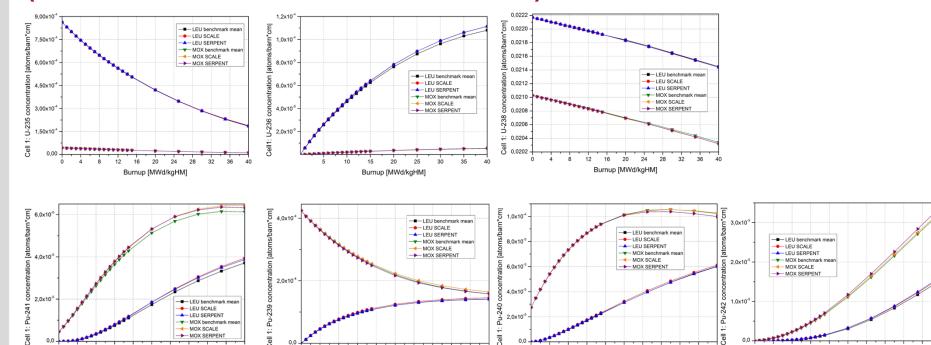
E. Bubelis & M. Schikorr - CDT technical meeting, KIT internal

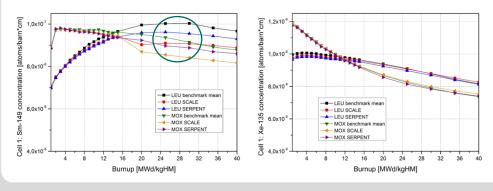
- SERPENT- k_{inf} systematically higher than SCALE- k_{inf}
- The agreement in between SERPENT/SCALE stands within ±0.39% (LEU) and ±0.33% (MOX)



12

Burn-up calculations – assembly averaged nuclide concentrations (SERPENT/Benchmark mean)

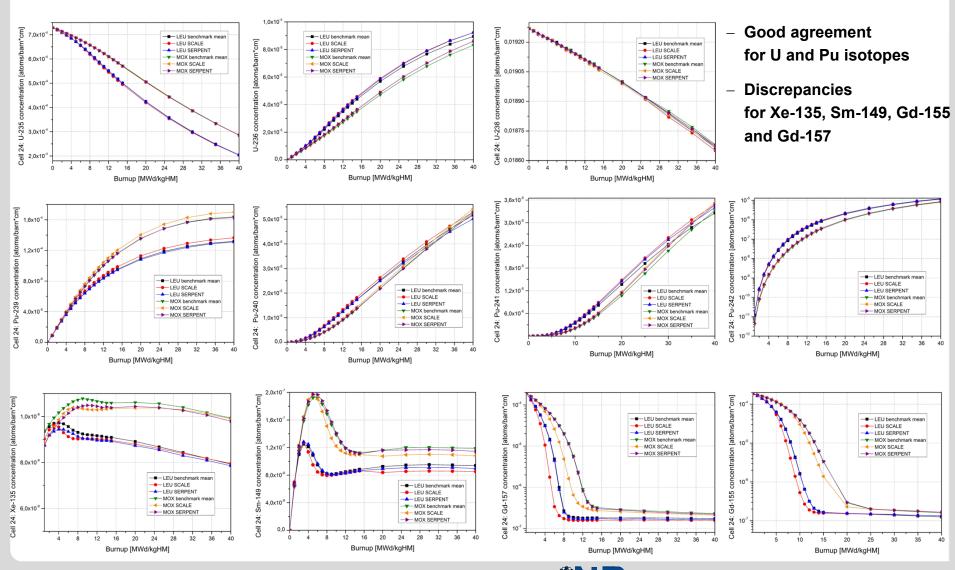



Burn-up calculations – Cell 1: nuclide concentrations (SERPENT/SCALE/Benchmark mean)

Burnup [MWd/kgHM]

Burnup [MWd/kgHM]

Burnup [MWd/kgHM]

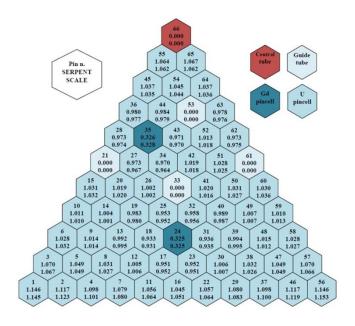

- Excellent/good agreement for U and Pu isotopes
- Discrepancies for Sm-149 at high burn-up levels

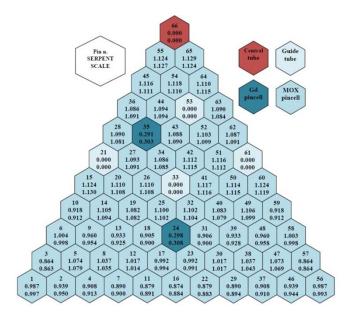
Burnup [MWd/kgHM]

Burn-up calculations – Cell 24: nuclide concentrations (SERPENT/SCALE/Benchmark mean)

L. Mercatali – AAA Workshop, 01.12.2014 (GRS)

Pin-by-pin fission rates


LEU Assembly	0 MWd/kgHM	20 MWd/kgHM	40 MWd/kgHM
Pin number	21	55	1
Max δ [%] (SCALE-SERPENT)	-0.78	2.14	3.22
Average δ [%] (SCALE-SERPENT)	0.25	0.69	1.45
MOX Assembly	0 MWd/kgHM	20 MWd/kgHM	40 MWd/kgHM
Pin number	10	4	46
Max δ [%] (SCALE-SERPENT)	-1.26	3.97	5.04
Average δ [%] (SCALE-SERPENT)	0.48	1.08	1.44


Good agreement SERPENT/SCALE

Maximum deviations:

LEU: -4.2% (pin 35)

MOX: -1.6% (pin 63)

Summary and conclusions

(INR)

- SERPENT and SCALE calculation schemes for VVER-1000 reactors have been tested on 2-D problems for fresh and depleted LEU and MOX fuel assemblies representative of the designs expected for the plutonium disposition mission
- Small deviations have been generally observed between the SCALE and SERPENT computed k_{inf}, nuclide concentrations and pin-by-pin fission rates.
- Very good agreement is found between SERPENT solutions and the corresponding previous MCNP4B results, making of this work also a new Monte Carlo reference solution for the OECD VVER-1000 LEU and MOX Assemblies Burnup Computational Benchmark with modern NDLs