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1. OBJECTIVES

e LONG TERM GOAL:

» Evaluate the impact of land use change on the West African
climate with WRF-Hydro (i.e. the Weather Research and
Forecasting Model coupled with the NCAR Distributed
Hydrological Modeling System NDHMS), in the framework of
WASCAL (West African Science Service Center for Climate
Change and Adaptive Land Use)

e SHORT TERM GOAL:
» Provide a WRF-Hydro set-up able to reproduce both
atmospherical and hydrological components of the observed
West African climate




2. OBSERVATIONAL DATA AVAILABLE

e GROUND MEASUREMENTS (2013)

» Flux measurements at the eddy
covariance tower site of the
Nazinga Park, since October 2012
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» Daily discharge observations at two
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hydrological stations along the Sissili river:
Nakong and Wiasi, available for the period
2003-2008

» Discharge data for 2013 will be available soon



2. OBSERVATIONAL DATA AVAILABLE

e GRIDDED OBSERVATIONAL DATA (2013)

» ERA-Interim reanalyses = Dynamics of the West African Monsoon
v" Low-level winds (arrows) and potential temperature (colors) @1000m height

temporally averaged for May — October 2013.
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2. OBSERVATIONAL DATA AVAILABLE

e GRIDDED OBSERVATIONAL DATA (2013)

» Daily Precipitation from the Tropical Rainfall Measuring Mission (TRMM)
—> Latitudinal displacement of the tropical rainbelt
v' Time-latitude diagram of daily precipitation zonally averaged between 8°W

and 8°E
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3. SET-UP OF THE NUMERICAL EXPERIMENTS

RF: Two nested domains @10km and @2km (Outer domain forced by ERA-Interim data)
35 vertical levels with a pressure model top at 20 hPa

Long and short wave radiation: RRTM and MM5 schemes
No Cumulus scheme, Microphysics: WSM 5-class scheme
Planetary boundary layer: YSU (Yonsei University) scheme
Land-atmosphere exchanges: 1-dimensional NOAH Land Surface Model

20N'Outer-do_mqin @10km

WRF-Hydro: Inner domain coupled with NDHMS using a routing grid @2000 m

Infiltration excess controlled by kdt,; = 3 (default value)
Overland flow and stream flow computed with default surface and channel roughnesses

Subsurface and base flow neglected
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These WRF and WRF-Hydro set-up are run for a 12-month period in 2013
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4. RESULTS

* DYNAMICS OF THE WEST AFRICAN MONSOON IN 2013
v" Low-level winds (arrows) and potential temperature (colors) @1000m height
temporally averaged for May — October 2013.

» Compared to ERA-Interim, WRF@10km slightly overestimates the strength of the
monsoon winds on the continent

» In WRF@10km the northern boundary of the southwesterlies is 2 degrees south
compared to ERA-Interim

» These dynamical differences certainly have an impact on the precipitation
modelled by WRF

| ERA-Interim |

| WRF@10km |
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4. RESULTS

LATITUDINAL DISPLACEMENT OF THE TROPICAL RAINBELT IN 2013

v' Time-latitude diagram of daily precipitation zonally averaged

between 8°W and 8°E)

» WREF is able to reproduce the latitudinal
displacement of the rainbelt

Modelled daily precipitation amounts are
comparable to TRMM, especially at the
latitudes of the Sissili watershed

» The simulated rainbelt is shifted 2 degrees
south at its northern boundary, as the
simulated southwesterlies (previous slide)

Continental precipitation during the West
African Monsoon is mainly due to Mesoscale
Convective Systems, which are apparently
well resolved in a WRF simulation @10km
without cumulus scheme
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4. RESULTS

e MONTHLY AREAL RAIN FOR THE SISSILI WATERSHED (2013)
» from TRMM
» from the outer domain of the WRF simulation
» From the inner domain of the WRF simulation

» from the inner domain of the WRF-Hydro simulation
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» The outer, inner domains of the WRF and WRF-Hydro simulations all produce different
monthly precipitation amounts, but relatively close to TRMM (rmse ~ 1 mmd-?)



4. RESULTS

e DISCHARGES FOR THE SISSILI WATERSHED (2003) il %
> An additional WRF-Hydro simulation has been run for 2003, Stk
when discharges data at Nakong and Wiasi is available '
» Default infiltration excess, surface and channel roughnesses
already give reasonable modelled discharges
» Lack of modelled discharge in September:
0 lack of modelled precipitation ?

O subsurface and base flow not taken into account yet ?
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4. RESULTS

e WATER BUDGET FOR THE SISSILI WATERSHED (2013)

Rain = ASoil Moisture + Evapotranspiration + runoff + deep drainage + Residuum -

» The surface runoff neglected in WRF is distributed to river
runoff, soil moisture, and deep drainage by WRF-Hydro

» Which proportion of the drained water comes back to the
surface in reality ? = Need for a Ground Water Model

10 I

rain {9Z24mm)
Asoil moisture (15%)

— surface runoff (20%)
6| = deep drainage (2%)
""""""" residual (-0.17%)

|
a1

evapotranspiration (B3%) SRS FESRRNY SO

WRF (inner dqmain)

watershe

ATz
ey

114N

""" residual (0.45%)

rain (365mm)

— Asoil moisture (21%)

evapotranspiration (62%)
river runoff (5%)
deep drainage (11%)

WRF-Hydro (inner_ domain)

mmd’

2 1
<¢ ?S/Ja pe

an

41/(-—
May.

S -
Juf-
/iug L
Sep-
O
Noy,



WRFZ fluxes (MWm-2)

Net Radiation = Sensible Heat + Latent Heat + Ground Heat + Residuum

» Observed fluxes between 12 and 13 UTC for the whole year
2013 are compared with the simulated ones

» Compared to WRF, WRF-Hydro decreases the rmse of Sensible
Heat, but increases the rmse of Latent Heat
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4. RESULTS
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4. RESULTS

e OUTCOMES OF WRF-Hydro (May-October 2013)
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4. RESULTS

OUTCOMES OF WRF-Hydro (May-October 2013)
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4. RESULTS

OUTCOMES OF WRF-Hydro (May-October 2013)

» Compared to WRF, WRF-Hydro does modify the bottom boundary condition

of the modelled atmosphere for the period May-October 2013:
Increase of humidity at 2m up to 5%
Decrease of temperature at 2m up to 0.5 K
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4. RESULTS

e OUTCOMES OF WRF-Hydro (May-October 2013)
» Compared to WRF, WRF-Hydro locally reduces / increases the bias with
TRMM precipitation for the period May-October 2013
» Need to validate this result for a longer time period and also with other
observational datasets
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4. RESULTS

e OUTCOMES OF WRF-Hydro (May-October 2013)

SUMMARY:

O In our case, compared to WRF, WRF-Hydro increases soil moisture

O As a consequence, WRF-Hydro produces more latent heat, less sensible heat,
» As aresult, air humidity increases, air and skin temperature decrease,

» Outgoing long wave radiation, as a function of skin temperature, also
decreases, inducing a net radiation increase

» This has a positive feedback on latent heat, increasing air humidity even
further

O THESE WRF-HYDRO RESULTS ARE CAUSED BY A BETTER REPRESENTATION OF
HYDROLOGICAL PROCESSES, AS COMPARED TO WRF STAND-ALONE.

O THE QUESTION STILL REMAINS WETHER OR NOT THIS ADDITIONAL LAND
SURFACE INFORMATION IMPROVES THE SIMULATED CLIMATE



5. CONCLUSIONS AND PERSPECTIVES

The WRF outer domain provides realistic large-scale dynamic features
with respect to ERA-Interim input data (partially shown)

Both outer and inner WRF domains give monthly and daily rainfall
close to TRMM data for the Sissili watershed

In this model configuration, the NDHMS coupled with the inner WRF
domain reproduces observed daily discharges in the Sissili watershed
with a Nash-Sutcliffe model efficiency coefficient of 0.41-0.52

NDHMS results can certainly be improved by model tuning, and also
by taking into account sub-surface lateral water flows

The outcomes produced by WRF-Hydro will be further investigated in
multi-year simulations
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TUNING OF THE DIRECT EVAPORATION IN NOAH LSM

In the NOAH LSM the direct evaporation E, is extracted from the volumetric water content of the
first soil layer ©,, as a function of:

—  vegetation cover fraction o,

—  soil moisture saturation fraction (9, -04,)/(0,-04;,),

—  potential evaporation E,.

— an empirical coefficient fx,

according to the formula: Ey, = E, * (1- o) * [ (0, -O4,)/(0,-Oy;,) 1fX

Soil moisture and precipitation from two WRF simulations @10km, one with fx=2 (default) and the
other with fx=1, are compared with measurements at Nazinga (see plots below)

In both simulations the soil moisture is overestimated by a factor two with respect to
measurements, certainly due to larger amounts of simulated rainfall than what observed

» With fx=1 the soil moisture falling off after a rain event looks more comparable to the observation
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TUNING OF THE DIRECT EVAPORATION IN NOAH LSM

Evapotranspiration and precipitation bias between the two WRF simulations with fx=1 and fx=2, for
the period May to October 2013

» Using fx=1 increases the total amount of evapotranspiration in the Sahel region north of 10°N,
and modifies the precipitation patterns
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TUNING OF THE DIRECT EVAPORATION IN NOAH LSM

= Rain bias between precipitation derived from the two WRF simulations, with fx=1 and fx=2, and

from TRMM, for the period May to October 2013
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» Using fx=1 reduces the bias in the focus region (inside the dark circle)
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