

Eddy covariance-based methane and CO₂ budget of a bog-pine ecosystem in southern Germany

Janina Hommeltenberg, Matthias Mauder, Katja Heidbach, Hans Peter Schmid

Institute of Meteorology and Climate Research, Atmospheric Environment Research

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Motivation

- eddy covariance based carbon exchange studies of peatland ecosystems mostly conducted in northern regions
- → eddy covariance based **methane** exchange is measured only at a few sites
- knowledge about full greenhouse gas (GHG) exchange of peatland forests is still lacking (Maljanan et al. (2010))

Measurement Site "Schechenfilz"

- near-natural peat-bog
- pristine peat layer, thickness > 5 m
- bog-pines: ≈ 2 m, different age
- water table depth: -0.06 ±0.04 m
- climate: temperate and humid
 - mean annual air temperature: +8.6 °C
 - annual sum of precipitation: 1127 mm

 2
 14.05.2014
 Janina Hommeltenberg

 Eddy covariance-based methane and CO₂ budget of a bog-pine ecosystem in southern Germany

Environmental conditions

- measurement period over
 15 months:
 from July 2012 to September 2013
- daily CH₄ release throughout the whole year
- CH₄ exchange is in phase with temperatures
- \rightarrow CH₄ peak in summer 2012
- → but not on 2013?
- water table drawdown event in summer 2013
 - carbon oxidation
 - reduced CH₄ emissions
 - reduced net CO₂ uptake

Janina Hommeltenberg

Eddy covariance-based methane and CO2 budget of a bog-pine ecosystem in southern Germany

Control Parameters

- no clear influence of spatial heterogeneity on CH₄ exchange
- increase of CH₄ emissions with increasing temperature
- → but not at high temperatures ?!?
- no obvious dependence on water table variations
- considering only CH₄ fluxes at lower water tables (< -0.12 m):</p>
- CH₄ emissions reduced and independent of environmental control
- methane exchange: mostly temperature controlled, except for periods of low water table

Eddy covariance-based methane and CO₂ budget of a bog-pine ecosystem in southern Germany

IMK-IFU

Methane gap-filling of half hourly fluxes

- examined three different methods:
 - 1) Mean daily variation
 - 2) Non-linear regression
 - 3) Look-up table

5

- best fit by look-up table method
- based on T_{air}, PAR, water table depth, reach of the 70% footprint isoline

Eddy covariance-based methane and CO_2 budget of a bog-pine ecosystem in southern Germany

Methane gap-filling of long data gap

- long data: gap filled on daily basis
- → exponential regression between daily mean T_{air} and CH_4 flux
- \rightarrow F_{CH4}= a*exp (T_{air}*b)
- improvement: excluding CH₄ fluxes, measured during drought period in summer 2013
- → 77% of the daily CH₄ variation could be explained by T_{air}
- drought period and data –gap did not overlap

14.05.2014 Janina Hommeltenberg

6

Garmisch-Partenkirchen

Eddy covariance-based methane and CO₂ budget of a bog-pine ecosystem in southern Germany

Annual budgets of CO₂

7

Eddy covariance-based methane and CO2 budget of a bog-pine ecosystem in southern Germany

8

Eddy covariance-based methane and CO₂ budget of a bog-pine ecosystem in southern Germany

Annual budget of GWP

- methane: 25 times stronger GWP than CO₂
- \rightarrow considerable reduction of CO₂ uptake induced climate cooling
- N₂O fluxes are negligible at nutrient poor, natural peatland sites

→ small greenhouse gas sink

→ overall GWP of -50 g C [CO₂-eq] m⁻²a⁻¹

	Carbon balance (g C m ⁻² a ⁻¹)	GWP-balance (g C [CO ₂ -eq] m ⁻² a ⁻¹)	
CO ₂	-62 =	-226	Deduction
CH ₄	+5.3 =	+176	of 80%
Balance	-57	-50	

Eddy covariance-based methane and CO₂ budget of a bog-pine ecosystem in southern Germany

IMK-IFU

Conclusions

- natural temperate bog-pine ecosystem: stable net CO₂ sink and a minor CH₄ source
- \rightarrow small greenhouse gas sink (GWP: -50 g C [CO₂-eq] m⁻²a⁻¹)
- wet soil conditions: Methane fluxes mostly temperature controlled
- <u>aerated soil conditions</u>: reduced methane emissions, independent of environmental control
- During observation period mean annual air temperature almost equals the longterm average
- \rightarrow observed methane balance is likely within the usual range

Eddy covariance-based methane and CO₂ budget of a bog-pine ecosystem in southern Germany

uncertainties

what is the real of the trees? your attention climate variability

11 14.05.2014 Janina Hommeltenberg

Eddy covariance-based methane and CO₂ budget of a bog-pine ecosystem in southern Germany

Appendix

Eddy covariance-based methane and CO₂ budget of a bog-pine ecosystem in southern Germany

Appendix

	CH₄	CO ₂	Total
Carbon-balance (gC m ⁻² a ⁻¹)	+5.3	-62	-56.7
in gCH ₄ m ⁻² a ⁻¹ and gCO ₂ m ⁻² a ⁻¹	+7.0	-226	*3.66
GWP ₁₀₀ -balance (gCO ₂ eq.m ⁻² a ⁻¹)	+176	* 25 -226	-50

Molar mass

- C: 12 g*mol⁻¹
- H: 1 g*mol⁻¹
- O: 16 g*mol⁻¹
- CH₄: 16 g*mol⁻¹

CO₂: 44 g*mol⁻¹

13

 $gC-CH_4$ in gCH_4 = 16 g*mol⁻¹ / 12 g*mol⁻¹ gC-CO₂ in gCO_2 = 44 g*mol⁻¹ / 12 g*mol⁻¹

25 times large GWP of CH₄

14.05.2014 Janina Hommeltenberg

Eddy covariance-based methane and CO₂ budget of a bog-pine ecosystem in southern Germany

IMK-IFU

Methane gap-filling of half hourly fluxes

- Examined three different methods:
 - a) Mean daily variation (MDV)
 - b) Look-up table (LUT), based on T_{air}, PAR, water table depth, reach of the 70% footprint isoline
 - c) Non-linear regression (NLR): F_{CH4} = a * exp (T_{air}* b)

LUT-method fits best

→ Minor influence of chosen method to annual net CH₄ exchange (range between ±0.5 g C m⁻² a⁻¹ or 16%)

 14
 14.05.2014
 Janina Hommeltenberg

Eddy covariance-based methane and CO_2 budget of a bog-pine ecosystem in southern Germany

IMK-IFU

LUT

IMK-IFU

Eddy covariance-based methane and CO₂ budget of a bog-pine ecosystem in southern Germany

Methane gap-filling of long data gap

- Long data gap of 7 weeks
- → gap-filled on daily basis by exponential regression between daily mean CH₄ flux and T_{air}
 → F_{CH₄} = a*exp (T_{air}*b)
- Improvement: excluding CH₄ fluxes, measured during the drought period in summer 2013
 →77% of the daily CH₄ variation could be explained by T_{air}

16 14.05.2014 Janina Hommeltenberg

Eddy covariance-based methane and CO₂ budget of a bog-pine ecosystem in southern Germany

Footprint climatology

IMK-IFU

Eddy covariance-based methane and CO₂ budget of a bog-pine ecosystem in southern Germany