

3D Ultrasound Computer Tomography

N.V. Ruiter, M. Zapf, T. Hopp, E. Kretzek, H. Gemmeke

Ultrasound Computer Tomography

Application: Breast imaging for cancer diagnosis

Breast imaging in fixed setup

- Basic idea:
 Surround object with (unfocused) ultrasound transducers in a fixed setup
- Features:
 - Reproducible 3D images with ultrasound
 - Three modalities concurrently
 - Sub-millimeter volumes
 - Fast data acquisition
 - Optimally focused images in 3D (isotropic PSF)

3D USCT imaging setup

Worldwide unique!

Ideal for Breast Cancer Diagnosis?

- Images three modalities concurrently
- Reflection: High quality "B-Scans"
- Speed of sound and attenuation:
 Quantitative information

[Simplified from Greenleaf et al.]

- USCT for early breast cancer diagnosis:
 - as good as MRI?
 - as cheap as X-ray mammography?
 - as harmless as diagnostic ultrasound!

USCT imaging principle

Image reconstruction

- Sound speed
- Attenuation
- Reflection

KIT 3D-USCT

Center frequency	2.5 MHz (~50% bandwidth)
------------------	--------------------------

Raw data Up to 40 GByte per breast

Measurement time 10 s - 8 min (now 4 min)

Maximal resolution (0.24 mm)³

Reflection Tomography

- How it works:
 - 3D Synthetic Aperture Focusing Technique

$$f(\vec{x}) = \sum_{(i,k)} A_{(i,k)} \left(\frac{\|\vec{x}_i - \vec{x}\| + \|\vec{x} - \vec{x}_k\|}{\hat{c}(\vec{x}_i, \vec{x}_k, \vec{x})} \right)$$

- Born approximation, no refraction
- Maximum resolution: (0.24 mm)³
- Speed of sound and attenuation correction

Reconstruction load and performance

- Realistic scenario: 256³ voxels using 8 million A-scans (MRI resolution)
- Using multi CPU and GPU cluster in 2 hours, corrected in 14 hours

Clinical Breast Phantom: Results

Transversal

USCT

MRI

Sagittal

Frontal

Transmission Tomography

- How it works (example for speed of sound)
 - t = I/C

- t: time of flight
- I: travelled path
- c: speed of sound
- n: number of measurements
- m: number of voxels
- Solve linear equation system using Total Variation minimization (TVAL3)
- Approximations and limitations
 - Straight ray approximation
 - Optimal resolution: (5 mm)³
 - Refraction correction
- Reconstruction load and performance
 - Matrix dimensions of 3 000 000 x 1 500 000
 - Reconstruction in 5 minutes, refraction corrected in 8 hours

22.01.2015

Clinical Breast Phantom: Speed of Sound and Attenuation

Image Fusion and Display

- Three types of images:
 - lacktriangle Reflectivity $I_{\scriptscriptstyle R}$
 - lacksquare Speed of sound I_s
 - \blacksquare Attenuation I_{A}
- Overlaid images I_o:

$$I_O = I_R + I_T$$

Thresholded fused images I_F*:

$$I_F = \left[I_R + I_{S=a}^{S=b}\right] + \left[I_{S>c} \bullet I_{A>d}\right]$$

[Simplified, based on Greenleaf et al, Clinical Imaging 1981.]

*N. Duric, P. Littrup, et al, "In-vivo imaging results with ultrasound tomography: Report on an ongoing study at the Karmanos Cancer Institute," Proc. SPIE Medical Imaging, 2010.

Clinical Breast Phantom: Speed of Sound and Attenuation

Pilot in-vivo study

- Aim: Test KIT 3D USCT with 10 patients
 - 1. Test data acquisition and image reconstruction protocols
 - 2. Test display/combination of multimodal images
 - 3. Compare tissue structures with established imaging method
- Study performed on 3 days at University Hospital of Jena, Germany
- MRI images as ground truth

Patient with Implants

Patient with carcinoma

Carcinoma

Patient with carcinoma

Carcinoma

Another Patient with Cancer

MRI: T2 (left), T1 subtraction, 2 min. after Gd-DTPA contrast agent (right)

USCT: Reflectivity (background) + tresholded speed of sound and attenuation (colour coded)

Cancer

Image registration

- Comparison of USCT and MRI is challenging due to buoyancy
 - → Image registration to estimate spatial correspondence

Patient with breast implant

Inflammatory carcinoma

Summary

- First in vivo images, it really works!
- Technical challenges could be met
- USCT has the potential to be the screening modality of the future

Ready for a larger clinical study at University Hospital Mannheim

Thank you!

We acknowledge support of this project by Deutsche Forschungsgemeinschaft (DFG)

IPE USCT Group

- Algorithms / Imaging / Image Processing
 N. V. Ruiter, M. Zapf, R. Dapp, T. Hopp,
 H. Gemmeke, et al.
- Hardware accelerationE. Kretzek, M. Balzer, et al.
- Transducers
 M. Zapf, H. Gemmeke, et al.
- DAQ and HardwareD. Tscherniakhovski, S. Menshikov, et al.
- Design and MechanicsL. Berger, B. Osswald, T. Piller, W. Frank, et al.