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Global climate change: warmer and wetter

IPCC Fifth Assessment Report (AR5), 2013
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Global climate change: warmer and wetter

Precipitation anomaly [mm/yr]
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West Africa: a region of low adaptive capacity
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United Nations Environment Programme (UNEP, 2013)

Changes in precipitation and increasing demand by a growing population!
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West African Monsoon - the big sea breeze

July - September January - March

Credits: C. Klein
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West African Monsoon - the big sea breeze

July - September January - March
Hovmüller diagrams (10˚W-10˚E averages)

Mean sea level pressure [hPa] and daily precipitation [mm]
Thorncroft et al. (2011)Credits: C. Klein



5

West African Monsoon - the big sea breeze

July - September January - March
Hovmüller diagrams (10˚W-10˚E averages)

Mean sea level pressure [hPa] and daily precipitation [mm]
Thorncroft et al. (2011)

Key question: Onset and duration of the rainy season?

Credits: C. Klein
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The failure of global climate projections

normalized RMSE, and standard deviation are 0.93, 0.42,

and 1.11, respectively, is close to and slightly worse than
CMAP and ALMIP and better than reanalyses or most

GCMs.

Spatial correlations of the WAMME-simulated precipi-

tation with observations range from 0.70 to 0.94. Only four
model runs, FVGCM, CFS, GFS, and UCLA GCM, have

correlations higher than 90%. The normalized RMSEs of

Fig. 1 JJAS 2003–2006 mean precipitation (mm day-1). a NCEP/DOE Reanalysis II, b ECMWF Reanalysis Interim, c–n WAMME
simulations; o WAMME ensemble mean; p CPC GTS data; q ALMIP data; r CMAP data; and s NCEP/NCAR Reanalysis I

8 Y. Xue et al.: Intercomparison and analyses of the climatology

123

NCEP Reanalysis II

ERA-Interim Reanalysis

Cornell/NCAR CAM/CLM3

MRI/JMA JAPAN AGCM

UCLA MRF GCM

CMAP Observation

June-August 2003-2006 mean precipitation [mm/day] Xue et al. (2010)
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Why resolution matters: from global to regional
Terrain height [m]

Δx = 150km

Δx = 18km
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Why resolution matters: from global to regional
Terrain height [m]

Δx = 150km

Δx = 18km

Model Grid size Time step

Global circulation model (GCM) 100-200km 10-20min

Global reanalysis (REA) 50-100km (5-10min)

Regional climate model (RCM) 10-50km 1-5min
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Regional downscaling at a glance

Global model  
(GCM)

Boundary 
conditions  
(forcing)

Initial 
conditions

Basic variables 
P, T, U, V, RH 

SM, SST
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Garbage in, garbage out
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Two concurring bias correction algorithms

Monthly mean of  
past GCM

Monthly mean of  
“future” GCM

Warming signal 
future - past

ERA Interim Reanalysis 
for past period+

Pseudo-global warming  
Rasmussen et al. (2011)

past: 1990-2000; “future”: 2000-2010
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Use average annual 
cycle of past REA

Perturbed average climate 
Done et al. (2012)

Allows one to see how current weather 
would look like in the future. Assumes that 

key climate features do not change.

Allows one to look at changes in 
weather and climate. Assumes that model 

biases are stationary in the future.

past: 1990-2000; “future”: 2000-2010
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The code - from a pilot to a production stage

Python pilot code  
 

Serial execution 
 

Dictionary-based 

Pro: easy to develop & debug 
Con: damn slow, memory use

# Start 

# Read data into dictionaries 
RAW_REA[date/time] = array(…) 
RAW_GCM[date/time] = array(…) 

# Calculate averages and decompose 
AVG_REA[date/time] = array(…) 
AVG_GCM[date/time] = array(…) 
VAR_GCM[date/time] = array(…) 

# Combine to revised climate data  
CMB_GCM[date/time] = array(…) 

# Write to disk, finish
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threads calling Fortran

Original   proposal

Python Global Interpreter Lock (GIL) problem; 
forced to use private-memory multiprocessing

Communication with Fortran routines requires 
passing large arrays in/out (copy in memory)

The Python Global Interpreter Lock (GIL) 
 

Python threads are system threads (POSIX etc.), 
representing threaded execution of Python interpreter. 

The GIL ensures only one thread runs in the interpreter 
at once (simplifies low-level details: memory …) 
With the GIL, you get cooperative multitasking! 

 
 

Beazley (2010), http://www.dabeaz.com/python/UnderstandingGIL.pdf

Copyright (C) 2010,  David Beazley, http://www.dabeaz.com

Thread Execution Model
• With the GIL, you get cooperative multitasking

10

Thread 1

Thread 2

Thread 3

I/O I/O I/O I/O I/O

• When a thread is running, it holds the GIL

• GIL released on I/O (read,write,send,recv,etc.)

run

run
run

run

run

release
 GIL

acquire
 GIL

release
 GIL

acquire
 GIL
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Python pilot code  
 

Serial execution 
 

Dictionary-based 

Pro: easy to develop & debug 
Con: damn slow, memory use

Parallel Python/Fortran 
 

Parallelized by model, 
period and files (np=9) 
Array-based storage 

Python shared-memory 
threads calling Fortran

Original   proposal

Python Global Interpreter Lock (GIL) problem; 
forced to use private-memory multiprocessing

Communication with Fortran routines requires 
passing large arrays in/out (copy in memory)

Parallel Python/Redis 
 

Parallelized by model, 
period and files (np=9+9) 

Storage in parallel Redis DB, 
arrays as binary string chunks 

Python private-memory 
processes communicating 

with Redis database

Current realization
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Initialization, launch  
Redis servers
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to disk
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Code version Period length Threads Peak mem. Runtime

Pilot code 2x30days 1 3.7Gb 73min

Current code 2x30days 9+9 2.7Gb <2min

Current code 2x10years 9+9 320Gb 185/213min

Runtime performance
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Scientific evaluation - 10-year climate runs

Domain configuration for climate simulations with WRF (http://www.wrf-model.org)  

  

WRF model performance on a single  
Fujitsu RX600 S5 2, 64 threads (SMT) 

30min realtime (rt) per simulation day 
58400 CPUh / 76 days rt. per 10-year run 

WRF model performance on JUROPA  
(FZ Jülich), 5x8 threads per run 

20min realtime (rt) per simulation day 
47500 CPUh / 51 days rt. per 10-year run 
 
Multiple model runs required  

ERA INT, MPI ESM, PAC, PGW
18km

72km

http://www.wrf-model.org
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Scientific evaluation - precipitation amounts

TRMM

GPCC

ERA INT

MPI ESM

PGW

PAC

Average precipitation July (2001-2006) in mm



15

Scientific evaluation - precipitation statistics

TRMM ERA INT PGW

PAC

Average precipitation and Pearson Correlation Coefficient wrt. TRMM July (2001-2006)

July AVG [mm] PCC
Total Land Sahel Total Land Sahel

TRMM (ref) 110.1 114.7 130.5 1 1 1
GPCC - 81.7 88.6 - 0.96 0.95
ERAINT 144.5 124.4 99.8 0.88 0.89 0.92
MPI ESM 195.6 118.2 49.0 0.39 0.82 0.91
PAC 87.1 75.1 23.0 0.80 0.79 0.86
PGW 136.2 118.1 69.8 0.85 0.87 0.91
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Scientific evaluation - 2m surface temperature

CRU ERA INT

MPI ESM

PGW

PAC

Average near surface temperature TRMM July (2001-2006) in °C

AVG [°C] Land Sahel

CRU 29.7 31.0

ERAINT 28.3 33.0

MPI ESM 28.6 33.8

PAC 28.1 33.0

PGW 28.1 33.1
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Extension to 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for 10-year (20-year) periods. We don’t have such systems.

Code to figure  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Serial execution 
 

Dictionary-based

Parallel Python/Redis 
 

Parallel execution (np=9+9) 

Storage in parallel Redis DB

Reading/writing the largest file (30Gb vs. 4.5Gb/500Mb) 
is the bottleneck of the current implementation

Parallel I/O 
(C/C++)

10-year reference/application periods may not be enough 
to smooth out patterns of inter-annual variability (El Niño…)

Extension to 
20-year periods

Current code requires at least 320Gb (640Gb) of memory 
for 10-year (20-year) periods. We don’t have such systems.

Code to figure  
out parallelization

Model comparison and evaluation for full period 2000-2010
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Sunset over the Sissili river, Northern Ghana (Nov. 2013)
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Backup slides
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Regional climate change: a rag rug with a trendcommenced around 1790, the droughts of the 1790s 
bearing witness to this (Nicholson 1996). The spatial 
pattern of anomalies for two of those years is shown 
in Fig. 11: 1835, a dry year throughout the continent, 
and 1888, a year with wet above-normal rainfall in the 

subtropics of both hemispheres and abnormally dry 
conditions throughout the equatorial region.

ARCHIVED DATA. The African historical dataset 
has been contributed to the World Data Center for 

FIG. 10. A wetness index for five sectors of Africa, based on a combination of gauge and documentary data. 
The range of values, –3 to +3, corresponds to conditions ranging from extremely dry to extremely wet, with 
zero indicating normal.

1227AUGUST 2012AMERICAN METEOROLOGICAL SOCIETY |

Wetness/drought index
Nicholson et al. (2013)
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Wetness/drought index
Nicholson et al. (2013)Monthly temperature and precipitation anomaly: 1980 to 2010 minus 1950 to 1980
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West Africa: a region of low adaptive capacity

Current average annual precipitation [mm]
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West African Monsoon (WAM) - a cooking recipe

Lafore et al. (2010/2011), Sylla et al. (2012)

ITD: InterTropical Discontinuity (north of ITCZ) 
AEJ: African Easterly Jet 
TEJ: Tropical Easterly Jet 
STWJ: SubTropical Westerly Jet

8 J.-P. Lafore et al.

Figure 1. Three-dimensional schematic view of the WAM. ITD, inter-tropical discontinuity; TEJ, tropical easterly jet; STWJ,
subtropical westerly jet; AEJ, African easterly jet. The oscillation of the AEJ yellow tube figures an African easterly wave [from
Lafore et al. (2010)].

east of 20 ◦E and develop through barotropic and
baroclinic energy conversions as they move along
the AEJ. Their wavelength (2000–4000 km) and
westward propagation (∼8 m s−1) result in periods
between 3 and 5 days. AEWs interact strongly with
moist convection, but a complete understanding of
these interactions is still lacking.

Due to strong baroclinicity and gradient of humid-
ity as discussed in Parker et al. (2005a), convection is
organized, and maximised, in the Inter-tropical con-
vergence zone (ITCZ), located at and south of the
latitude of the AEJ and about 10◦ to the south of
the ITD. When active, the associated upper-level anti-
cyclonic and divergent flow feeds the tropical east-
erly jet (TEJ) and subtropical westerly jet (STWJ).
Fast-moving mesoscale convective systems account
for most of the rain over the Sahel (∼12–18 ◦N) and
about half of the rain in the wetter Soudanian zone
(∼9–12 ◦N). They are also the main source of long-
lived cirrus ice clouds, which strongly modulate the
radiative balance in the WAM region. The understand-
ing, forecasting and representation in models of MCSs
and their interplay with large-scale features of the
WAM remain major challenges.

3. A new perspective on the physics
and dynamics of weather systems
in the monsoon

Prior to AMMA, the ‘textbook’ vision of the mon-
soon system, outlined in Section 2, showed some fea-
tures which, in the study of climates of other parts
of the world, would have been regarded as outmoded.
Notably, there has been rather a crude ‘airmass’ pic-
ture of the thermodynamics in the monsoon, while in

contrast AMMA has exposed the critical importance
of mixing and exchange between the different layers
shown in Figure 1, modulated by the diurnal cycle.
Likewise, the relatively simplistic picture of synoptic
systems growing as normal-mode instabilities has long
been criticised in the study of midlatitude dynamics,
but was still prevailing in discussions of the monsoon.
As well as bringing our understanding of the WAM
system up to speed with modern dynamical concepts,
AMMA has also provided new and innovative under-
standing of the dynamics of weather and climate over
the tropical continents, particularly in our understand-
ing of the continental moisture budgets over a range of
climatic zones, in the appreciation of the larger-scale
role of convective cold pools and in a new awareness
of the interaction of tropical continental dynamics with
midlatitude systems.

The schematic representation in Parker et al. (2005a)
provides a view of the vertical structure of the WAM
with a strong meridional contrast of the ABL depth
reflecting the strong moisture and temperature gradi-
ent of surface conditions. Through AMMA, we now
recognise the significance of the diurnal cycle of the
ABL in the weather and climate of the whole con-
tinent: over the Sahara the ABL makes up around
50% of the mass of the troposphere, and the diurnally-
evolving heat low is a major control on the whole
North African circulation. Further in south, in the
Sahel, there are strong seasonal and meridional con-
trasts in the ABL (Saı̈d et al., 2010), and large
mesoscale fluctuations (Taylor et al., 2007) which feed
back on the atmospheric circulation. For instance, day-
time surface heating and convective boundary layer
(CBL) growth are found to directly influence the diur-
nal cycle of the AEJ prior to the monsoon onset; this

Copyright © 2011 Royal Meteorological Society Atmos. Sci. Let. 12: 7–12 (2011)

The oscillation of the AEJ yellow tube 
figures an African Easterly Wave.

Schematic view of West African Monsoon System
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WAM key ingredients: getting the dynamics right

The meridional structure 
of the mean rainfall is itself 
related to the mean me-
ridional circulation (Fig. 2), 
characterized by a near-
surface monsoon flow that 
brings water evaporated 
over the Gulf of Guinea 
over the African continent. 
This monsoon f low con-
verges with a southward 
dry airf low coming from 
the Sahara at the “inter-
tropical discontinuity” in 
the region of the Saharan 
heat low where dry con-
vection occurs. The return 
branch of this Hadley cir-
culation at around 600 hPa 
is associated through the 
angular momentum budget 
and thermal wind balance 
with the African easterly jet 
(AEJ), which, in turn, trans-
ports additional moisture from the Indian Ocean. The 
intertropical convergence zone (ITCZ) is positioned at 
around 10°N, where most of the convective rainfall oc-
curs, with a mean upward motion that reaches 200 hPa 
where the tropopause easterly jet is located.

The relative zonal symmetry of the climate means 
does not account for the strong longitudinal varia-
tions taking place on a daily basis. The accumulated 
rainfall is the result of successive convective events, 
which are either local or organized as mesoscale con-

vective systems or squall lines (Mathon et al. 2002). 
The interaction between the tropical waves and the 
convection plays a dominant role at both synoptic (the 
main convective activity typically develops ahead of 
or within the trough of the African easterly waves) 
and intraseasonal (very important for agriculture) 
time scales. At intraseasonal and interannual time 
scales, the African monsoon is also influenced by 
regional and global patterns of the sea surface tem-
perature (SST) and local coupling with surface pro-
cesses, but the amplitude and mechanisms of those 
couplings are still very uncertain.

The last Intergovernmental Panel on Climate 
Change (IPCC) report (Solomon et al. 2007) con-
firms that coupled atmosphere–ocean models poorly 
simulate the West African climate (Cook and Vizy 
2006). As for climate change projections, the models 
disagree even on the sign of the expected trend in the 
mean rainfall on that region. Atmospheric models 
forced by observed SSTs also fail to reproduce some 
important aspects of the monsoon system.

The African Monsoon Multidisciplinary Analyses 
(AMMA) project was designed in a large part to ad-
dress the main uncertainties in atmospheric processes 
controlling the monsoon system and to contribute 
to the evaluation and improvement of climate and 
weather forecast models in that respect. The obser-
vational strategy included both reinforcement of 
the operational network of surface stations and of 

AFFILIATIONS: HOURDIN, MUSAT, GRANDPEIX, AND POLCHER—
LMD/IPSL, UPMC, Paris, France; GUICHARD, FAVOT, MARQUET, 
BOONE, LAFORE, AND REDELSPERGER—CNRM/GAME (CNRS and 
Météo-France), Toulouse, France; RUTI AND DELL’AQUILA—ENEA, 
Rome, Italy; PHAM—SA/IPSL, UPMC, Paris, France; LOSADA 
DOVAL—Departamento de Geofisica y Meteorologia, Facultad de 
Ciencias Fisicas, UCM, Madrid, Spain; TRAORE—LPAOSF, UCAD, 
Dakar, Senegal; GALLÉE—LGGE, CNRS, Grenoble, France
*Deceased.
CORRESPONDING AUTHOR: Frédéric Hourdin, Laboratoire de 
Météorologie Dynamique du CNRS, UPMC, Tr 45-55, 3et, BP 99, 
75252 Paris CEDEX 05, France
E-mail: hourdin@lmd.jussieu.fr

The abstract for this article can be found in this issue, following the 
table of contents.
DOI:10.1175/2009BAMS2791.1

In final form 29 June 2009
©2010 American Meteorological Society

FIG. 2. Mean meridional circulation (stream lines) and associated mean zonal 
wind (m s−1, contours). Mean Jul–Sep (JAS) conditions are from the NCEP 
reanalyses.
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multimodel multirun AMMA-MIP database, as illus-
trated in Fig. 5, which suggests that a large part of the 
biases comes from a shift in the whole monsoon system 
in latitude. For a particular model configuration (see 
figure), the dispersion either as a result of the internal 
variability (as given by the ensemble runs when avail-
able) or the boundary conditions [2000 (empty circles) 
versus 2003 (filled circles) SSTs] is generally smaller 
than the typical difference between two models or be-
tween one model and observations. This can be assessed 
further by looking at the results in Table 1.

Most simulations show a somewhat larger rain-
fall when forced by 2003 rather than by 2000 SSTs. 
However, the difference is not much larger than 
the internal variability given by the UCM and IPSL 
ensemble simulations for given SST conditions, sug-
gesting that even the larger observed rainfall in 2003 
could be due to internal variability rather than being 
forced by SSTs. The NCEP–NCAR reanalysis and 
ERA-40 suggest a jet farther north by about 1° in 2003 
(Grist and Nicholson 2001); however, no systematic 
correlation is found between a northward migration 
of the jet and larger rainfall in 2003 with respect to 
2000 when looking at the models. It must be kept in 
mind that a displacement by 1° is a displacement by 
less than one grid point for most models and reanaly-
sis products.

Notice also that the re-
analyses are in rather good 
agreement with each other 
for the jet core location but 
are quite far from observa-
tion for the Sahelian accu-
mulated rainfall, making 
the reanalysis similar to 
rather bad climate models 
in that respect.

Surface fluxes. The latitudi-
nal gradients of moist static 
energy have been shown to 
play a key role in the control 
of the African monsoon 
(Eltahir and Gong 1996). 
This latitudinal gradient is 
forced at first order by the 
thermal contrasts between 
the Gulf of Guinea (which 
is relatively cool at that 
time) and the Sahara. The 
aerosols and clouds signifi-
cantly modulate the latitu-
dinal contrasts of top of the 

atmosphere and surface radiative fluxes. The surface 
albedo can be an important source of discrepancy 
between the various models. Surface hydrology also 
plays a key role through the partitioning of sensible 
and latent heat fluxes (e.g., Fontaine et al. 2002).

Validation of climate models in terms of surface 
fluxes is one of the expected important outcomes of 
the campaign. Data are currently being processed 
in a form usable for model validation. In addition to 
direct observations, the AMMA Land Surface Model 
Intercomparison Project (ALMIP; Boone et al. 2009) 
provides a collection of simulated surface fields built 
using so-called soil–vegetation–atmosphere transfer 
models forced by a combination of observed, satellite-
based, and forecast meteorological fields.

First analyses (not shown) revealed the large 
dispersion between the various AMMA-MIP 
models in terms of cloud forcing, and latent and 
sensible heat f luxes, a point which merits further 
investigations.

Parameterized convection and meridinal transport. 
The parameterized convection is a key issue for 
climate modeling, in particular over tropical conti-
nents. This aspect is illustrated based on results of 
the LMDZ4 model with the two deep convection 
schemes (corresponding to simulations IPSL1 and 

FIG. 5. Latitude of AEJ (°N) versus mean rainfall over a Sahelian box (13°–18°N, 
10°W–10°E) for all of the AMMA-MIP simulations; for the CMAP and GPCP 
observations; and NCEP–NCAR, and NCEP-2 reanalyses for JJAS season, 
and 2000 (empty circle) and 2003 (filled circle) years. The AEJ latitude for 
CMAP and GPCP corresponds to the ERA-40 reanalyses for year 2000 and 
to ERA-Interim reanalyses for year 2003.
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Latitude of African Easterly Jet vs. mean 
daily rainfall [mm] for the Sahel 2000/2003

Observation

The rise and fall in Sahel rainfall accuracy with the position of the ITCZ
Hourdin et al. (2010)
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Scientific evaluation - precipitation amounts

TRMM

GPCC

ERA INT

MPI ESM

PGW

PAC

Average precipitation July (2001-2006) in mm
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Scientific evaluation - precipitation differences

TRMM

GPCC

ERA INT

MPI ESM

PGW

PAC

Average precipitation / difference in avg. precipitation to TRMM July (2001-2006) in mm
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Scientific evaluation - precipitation amounts

TRMM

GPCC

ERA INT

MPI ESM

PGW

PAC

Average precipitation August (2001-2006) in mm
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Scientific evaluation - precipitation differences

TRMM

GPCC

ERA INT

MPI ESM

PGW

PAC

Average precipitation / difference in avg. precipitation to TRMM August (2001-2006) in mm
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July AVG [mm] ME [mm] PC
Total Land Sahel Total Land Sahel Total Land Sahel

TRMM 110.1 114.7 130.5 - - - - - -
GPCC - 81.7 88.6 - -33.0 -41.7 - 0.96 0.95
ERAINT 144.5 124.4 99.8 34.4 9.7 -30.7 0.88 0.89 0.92
MPI ESM 195.6 118.2 49.0 85.6 3.5 -81.5 0.39 0.82 0.91
PAC 87.1 75.1 23.0 -23.0 -39.6 -107.5 0.80 0.79 0.86
PGW 136.2 118.1 69.8 26.1 3.4 -60.7 0.85 0.87 0.91

August AVG [mm] ME [mm] PC
Total Land Sahel Total Land Sahel Total Land Sahel

TRMM 125.7 143.2 161.6 - - - - - -
GPCC - 103.1 88.6 - -40.1 -73.0 - 0.95 0.88
ERAINT 139.0 138.9 119.2 13.3 -4.3 -42.4 0.90 0.90 0.93
MPI ESM 217.5 162.0 97.0 91.8 18.8 -64.6 0.50 0.84 0.88
PAC 98.3 94.6 31.0 -27.4 -48.6 -130.6 0.82 0.81 0.87
PGW 145.9 143.4 129.1 20.2 0.2 -32.5 0.87 0.91 0.93

Scientific evaluation - precipitation statistics



30

Sunset over the Sissili river, Northern Ghana (Nov. 2013)


