

Stability of Pastes for the Manufacturing of Lithium Ion Batteries

Werner Bauer, C. Brösicke, F. Çetinel, M. Müller, D. Nötzel

INSTITUTE FOR APPLIED MATERIALS – CERAMIC MATERIALS AND PROCESSING (IAM-KWT)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Manufacturing of Lithium Ion Batteries

Laboratory **pouch cells are used** as a tool to investigate

- material properties
- processing aspects
- interaction of cell components

Stabilization of Battery Slurries

Prevention of agglomeration or sedimentation is feasible by

Rheological Characterization

Steady State Measurements

Flow and viscosity curve

Oscillation Measurements

5 17.03.2015 Werner Bauer – DKG-Jahrestagung 2015

Amplitude (and frequency) sweep

shear stress τ / Pa

Organic vs Aqueous Processing Organic Processing Solvent: N-Methyl-2-pyrrolidone (NMP) Polyvinylidene fluoride (PVDF) Standard binder: Aqueous Processing Solvent: Water Standard binder: Carboxy Methyl Cellulose Styrene Butadiene Rubber (CMC) (SBR) $H_2 - CH = CH - CH_2$ RO. R = H orRO

Viscoelastic Behavior of PVDF Slurries

- Gel formation takes place only with small particles.
- Increasing tendency for gel formation at high molecular weight and high degree of functionalization.

PVDF		Active Material				
MW (g/mol)	Features	0.18 μm	1 – 3.7 μm	8.9 µm		
410 000		-	-	-		
1 100 000			-	-	gel	
>1 300 000				-		
450 000	HFP 6-8%		-	-	fluid	
480 000	HFP 10-12%		-	-		
410 000	functionalized		-	-	Sedimentation	
690 000		+	-	-		
1 100 000	functionalized		-	-		
(w/a apphan black or graphita)						

(w/o carbon black or graphite)

Interaction of PVDF with Large Particles

- PVDF properties, e.g. unbranched homopolymer MW = 700.000
 - Length of fully stretched configuration: 5.0 μm.
 - Radius of gyration for coiled configuration in NMP solution: 44 nm¹.
 - \rightarrow small compared to NMC particles (size \approx 10 µm)
- Weak interfacial adhesion \rightarrow low unfolding tendency
- Binder enables only marginal interaction between particles

No stabilizing gel structure

¹ Lutringer, Weill, Polymer 32 (1991) 877

Interaction of PVDF with Small Particles

- PVDF properties, e.g. unbranched homopolymer MW = 700.000
 - Length of fully stretched configuration: 5.0 μm.
 - Radius of gyration for coiled configuration in NMP solution: 44 nm¹.
 - \rightarrow comparable to LiFePO₄ particles (size \approx 0.2 µm)
- Formation of a pervasive polymer network.
- Bridging flocculation possible.

¹ Lutringer, Weill, Polymer 32 (1991) 877

Impact of Carbon Black

- NMP: polar solvent (relative permittivity 32.2, dipole moment 4.0930 D)
 → Carbon black forms a weak particulate gel in NMP
- Gel strength is to weak to enable the stabilization of large particles.

 $E_{coh} = \frac{1}{2}G' \cdot \gamma_{crit}^2$

- Addition of PVDF binder allows the preparation of a stable slurry.
- Relevant is the interaction of binder with carbon black.
 → Formation of a percolating cluster structure

Binder	E _{coh} / 10 ⁻⁶ J/m ³		
No binder	198		
5 wt.% 761	1975		
5 wt.% HSV	1045		

20 vol.% NMC + 4 wt.% carbon black

Relevance of Cluster Structure

- Intensive mixing leads to fluidic behavior.
- Deviating carbon black and binder distribution compared to moderate mixing by dissolver.

Signal A = InLens

Photo No. = 7394

1 µm ├──

EHT = 10.00 kV

WD = 7.4 mm

Ceramic Materials and Technologies (IAM-KWT)

TFT JP-Schlicker Kathode U

Mag = 5.00 K X IAM-WPT/KER

Aqueous Processing: Carboxy Methyl Cellulose

- Carboxy Methyl Cellulose (CMC) is a polyelectrolyte
 Primary function: Dispersant for carbon black
- Strong viscosity rise by CMC addition
 → limited contribution as a binder

CMC addition to carbon black dispersion (5%)

NMC slurry with CB and CMC

Aqueous Processing: Carbon Black

- Stabilizing potential of carbon black depends on slurry processing.
- Formation of stabilizing network above critical addition of carbon black.

Aqueous Processing: Latex Binder

- Particle dispersion (d = $0.1 0.2 \mu m$)
- Provides high adhesion strength
- Low impact on slurry rheology (at moderate solid content)
- Minor stabilization effects
- Additional binder required

Summary

- Stabilization of the slurry prevents cell degradation by segregation effects.
- Slurry stabilization should be attained with essential electrode components.
- Interaction of polymer binder and carbon black is most significant.
- Clusters are also vital for the formation of a percolation structure.

Thank you for your attention.

