

GPU-based image processing with the UFO framework

Matthias Vogelgesang

matthias.vogelgesang@kit.edu

INTRODUCTION

Institute for Data Processing and Electronics

Hardware

- Development (FPGA, ASIC)
- Manufacturing (circuit production, bonding)
- Characterization and long-term tests

Software

- Experiment control and data acquisition
- Analysis of acquired data
- Large scale data storage

Institute for Data Processing and Electronics

Hardware

- Development (FPGA, ASIC)
- Manufacturing (circuit production, bonding)
- Characterization and long-term tests

Software

- Experiment control and data acquisition
- Analysis of acquired data
- Large scale data storage

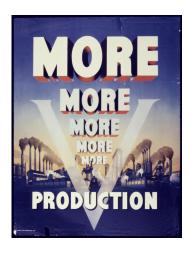
Data analysis for synchrotron μ CT

Higher requirements

- Compute-intensive reconstruction
- More pre- and post-processing
- Faster and direct feedback

More data

- Better sensors
- Higher throughput
- Time-resolved scans



Data analysis for synchrotron μ CT

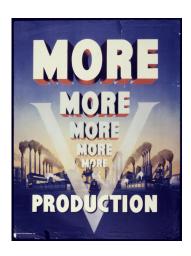
Higher requirements

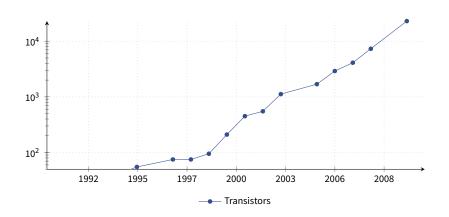
- Compute-intensive reconstruction
- More pre- and post-processing
- Faster and direct feedback

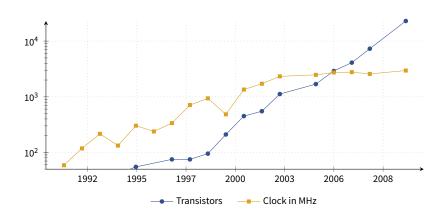
More data

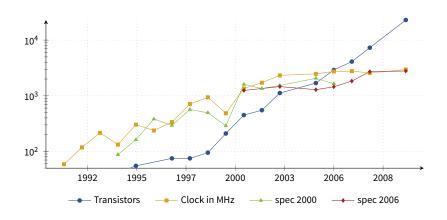
- Better sensors
- Higher throughput
- Time-resolved scans

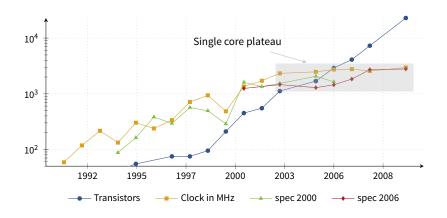
Existing tools can hardly satisfy the demands!











Using larger integration

- Complex instruction sets
- Larger caches
- More cores

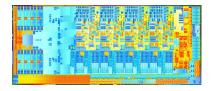


Figure : Intel Haswell cpu-Die

Using larger integration

- Complex instruction sets
- Larger caches
- More cores

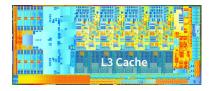


Figure : Intel Haswell cpu-Die

Using larger integration

- Complex instruction sets
- Larger caches
- More cores

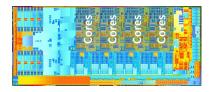


Figure : Intel Haswell cpu-Die

Using larger integration

- Complex instruction sets
- Larger caches
- More cores

Parallelization required

- Instruction level (sse, avx)
- Multi-core CPUs und many-core GPUs
- Multi-node cluster

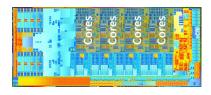


Figure: Intel Haswell cpu-Die

Using larger integration

- Complex instruction sets
- Larger caches
- More cores

Parallelization required

- Instruction level (sse, avx)
- Multi-core CPUs und many-core GPUs
- Multi-node cluster

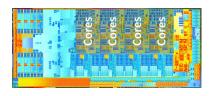


Figure: Intel Haswell cpu-Die

HETEROGENEOUS STREAM PROCESSING

Requirements

- Process image streams on the fly
- Use heterogeneous compute systems

- Define tasks of work
- Connect processing workflows
- Let a run-time schedule tasks

Requirements

- Process image streams on the fly
- Use heterogeneous compute systems

- Define tasks of work
- Connect processing workflows
- Let a run-time schedule tasks

Requirements

- Process image streams on the fly
- Use heterogeneous compute systems

- Define tasks of work
- Connect processing workflows
- Let a run-time schedule tasks

Requirements

- Process image streams on the fly
- Use heterogeneous compute systems

- Define tasks of work
- Connect processing workflows
- Let a run-time schedule tasks

Requirements

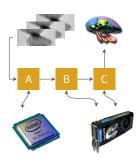
- Process image streams on the fly
- Use heterogeneous compute systems

- Define tasks of work
- Connect processing workflows
- Let a run-time schedule tasks

Requirements

- Process image streams on the fly
- Use heterogeneous compute systems

- Define tasks of work
- Connect processing workflows
- Let a run-time schedule tasks



Execution model

- Sequence of multi-dimensional data x_k
- Tasks t_i generate, process and consume x_k 's
- Computation ist inherently sequential

Parallelisation opportunities

Tasks have data dependencies but don't share state

- Pipeline parallelism
- Data parallelism on multiple cores
- Data parallelism on GPUs

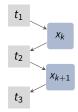
Execution model

- Sequence of multi-dimensional data x_k
- Tasks t_i generate, process and consume x_k 's
- Computation ist inherently sequential

Parallelisation opportunities

Tasks have data dependencies but don't share state

- Pipeline parallelism
- Data parallelism on multiple cores
- Data parallelism on GPUs



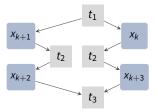
Execution model

- Sequence of multi-dimensional data x_k
- Tasks t_i generate, process and consume x_k 's
- Computation ist inherently sequential

Parallelisation opportunities

Tasks have data dependencies but don't share state

- Pipeline parallelism
- Data parallelism on multiple cores
- Data parallelism on GPUs



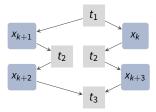
Execution model

- Sequence of multi-dimensional data x_k
- Tasks t_i generate, process and consume x_k 's
- Computation ist inherently sequential

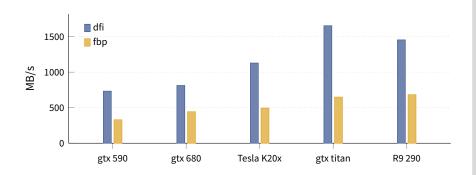
Parallelisation opportunities

Tasks have data dependencies but don't share state

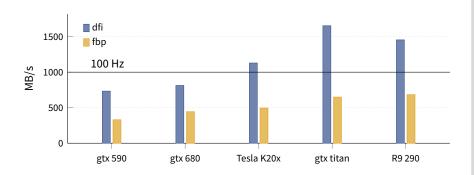
- Pipeline parallelism
- Data parallelism on multiple cores
- Data parallelism on GPUs



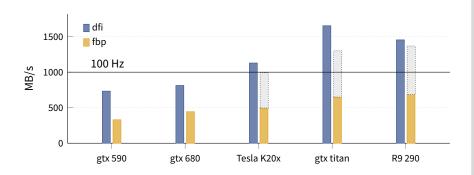
Reconstruction throughput



Reconstruction throughput



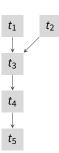
Reconstruction throughput



Static assignment

- Partitioning of tasks
- Identification of processing units
- Depth-first search for path identification
- Insertion of duplicates
- Mapping and execution

- Avoids unnecessary data transfers
- Automatic scaling

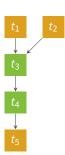


Static assignment

- Partitioning of tasks
- Identification of processing units
- Depth-first search for path identification
- Insertion of duplicates
- Mapping and execution

Benefits

- Avoids unnecessary data transfers
- Automatic scaling



10

Static assignment

- Partitioning of tasks
- Identification of processing units
- Depth-first search for path identification
- Insertion of duplicates
- Mapping and execution

- Avoids unnecessary data transfers
- Automatic scaling

Static assignment

- Partitioning of tasks
- Identification of processing units
- Depth-first search for path identification
- Insertion of duplicates
- Mapping and execution

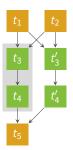
- Avoids unnecessary data transfers
- Automatic scaling



Static assignment

- Partitioning of tasks
- Identification of processing units
- Depth-first search for path identification
- Insertion of duplicates
- Mapping and execution

- Avoids unnecessary data transfers
- Automatic scaling

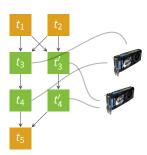


Static assignment

- Partitioning of tasks
- Identification of processing units
- Depth-first search for path identification
- Insertion of duplicates
- Mapping and execution

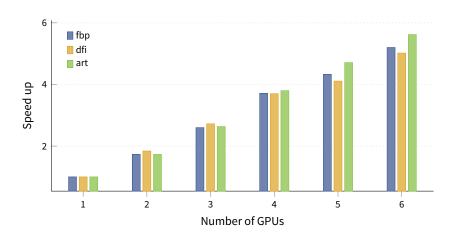
Benefits

- Avoids unnecessary data transfers
- Automatic scaling

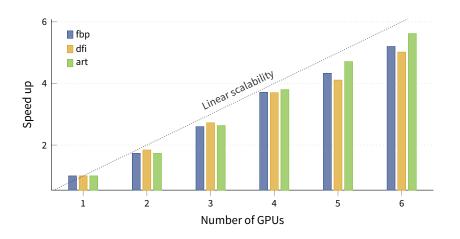


10

Reconstruction scalability



Reconstruction scalability



11

Strategy

- Again, we assume existing task graph
- Proxy task represents subpath
- Instantiate subpath remotely
- Send and receive input and output

Benefits

- Local multi gpu optimization
- Abstracts from network communication (InfiniBand via MPI, Zeromq)

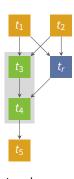
Local

Strategy

- Again, we assume existing task graph
- Proxy task represents subpath
- Instantiate subpath remotely
- Send and receive input and output

Benefits

- Local multi gpu optimization
- Abstracts from network communication (InfiniBand via MPI, Zeromq)



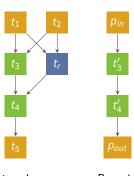
Local

Strategy

- Again, we assume existing task graph
- Proxy task represents subpath
- Instantiate subpath remotely
- Send and receive input and output

Benefits

- Local multi gpu optimization
- Abstracts from network communication (InfiniBand via MPI, Zeromq)



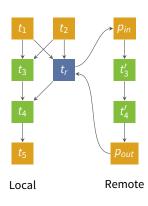
Remote

Strategy

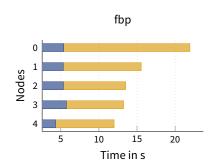
- Again, we assume existing task graph
- Proxy task represents subpath
- Instantiate subpath remotely
- Send and receive input and output

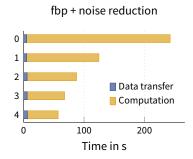
Benefits

- Local multi gpu optimization
- Abstracts from network communication (InfiniBand via MPI, Zeromg)



Scalability





Scalability limited by compute and data transfer ratio

13

Implementation

Framework

- Concepts are implemented as a C library
- Accelerator devices are accessed through OpenCL
- Language bindings are provided through GObject

Applications

- Flat-correction, denoising, data conversion
- Filtered backprojection for tomographic and laminographic reconstruction
- Direct Fourier methods and algebraic techniques
- Feature detection, particle tracking

14

Usage

As a user

- Command line
 - \$ ufo-launch read ! blur ! write filename=foo.tif
- Pre-defined JSON
 - \$ ufo-runjson pipeline.json
- tango interface

Usage

As a user

- Command line
 - \$ ufo-launch read ! blur ! write filename=foo.tif
- Pre-defined JSON
 - \$ ufo-runjson pipeline.json
- tango interface new

Usage

As a user

- Command line
 - \$ ufo-launch read ! blur ! write filename=foo.tif
- Pre-defined JSON
 - \$ ufo-runjson pipeline.json
- tango interface new

As a developer

- Directly via C API
- Through language bindings, e.g. standard Python
- High-level Python interface

Standard Python interface


```
from gi.repository import Ufo
pm = Ufo.PluginManager()
read = pm.get task('read')
opencl = pm.get_task('opencl')
write = pm.get task('write')
read.set properties(path='/home/data/*.tiff')
opencl.set_properties(source='...', kernel='...')
write.set_properties(filename='/home/out.tiff')
g = Ufo.TaskGraph()
g.connect_nodes(read, opencl)
g.connect_nodes(opencl, write)
sched = Ufo.Scheduler()
sched.run(g)
```

High-level Python


```
from ufo import Read, Write, Opencl
read = Read(path='/home/data/*.tiff')
opencl = Opencl(source='...', kernel='...')
write = Write(filename='/home/out.tiff')
# write to disk
write(opencl(read())).run().wait()
# or use result
for image in opencl(read()):
    print(np.mean(image))
```

JSON representation


```
"nodes": [
 {"plugin": "read", "name": "read",
   "properties": {"path": "/home/data/*.tiff"}},
 {"plugin": "opencl", "name": "opencl",
   "properties": {"source": "...", "kernel": "..."}},
  {"plugin": "write", "name": "write",
   "properties": {"filename": "/home/out.tiff"}}
"edges": [
 {"from": "read", "to": "opencl", "input": 0},
 {"from": "opencl", "to": "write", "input": 0}
```


OPENCL

Implementations

OpenCL is widely supported but ...

Vendor	Rev.	GPU	CPU	FPGA	OS
NVIDIA	1.1	~	_	_	∆ ≈ ¢
AMD	2.0	~	~	_	∆ ≈ €
Intel	2.0	~	~	_	A 👫
Apple	1.2	~	~	_	É
Altera	1.0	_	_	~	A 👫

Programming model

Platform

- Host controls ≥ 1 platforms (i.e. vendor SDKs)
- A platform consists of ≥ 1 devices (CPU, GPU, FPGA)
- Host allocates resources and schedules execution
- Devices execute code assigned to them by the host

Programming model

Platform

- Host controls ≥ 1 platforms (i.e. vendor SDKs)
- A platform consists of ≥ 1 devices (CPU, GPU, FPGA)
- Host allocates resources and schedules execution
- Devices execute code assigned to them by the host

Devices

- A single device has ≥ 1 compute units
- Each CU has \geq 1 processing elements
- Mapping of CUs and PEs to hardware is not specified

Programming model II

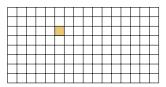
Context

- A context encompasses devices of a single platform that want to share data
- Memory buffers are created within a context and *not* per device

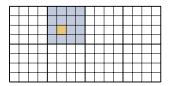
Command queues

- Communication with a device is only possible through *command queues*
- Created within a context for a specific device
- Commands are data transfers and kernel executions
- Implicit and explicit synchronization of commands

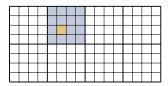
Work is arranged as work items on a 1D, 2D or 3D grid



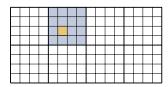
- Work is arranged as work items on a 1D, 2D or 3D grid
- Grid is split into work groups



- Work is arranged as work items on a 1D, 2D or 3D grid
- Grid is split into work groups
- Work groups are scheduled on one or more CUs



- Work is arranged as work items on a 1D, 2D or 3D grid
- Grid is split into work groups
- Work groups are scheduled on one or more CUs
- Each work item executes a kernel on a PEs



Memory, buffers and images

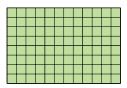
- Host cannot access device memory and vice versa
- Buffers transfer data between host and device memory
- Images are specially typed buffers

Memory, buffers and images

- Host cannot access device memory and vice versa
- Buffers transfer data between host and device memory
- Images are specially typed buffers

Device memory

Global, host-accessible, modifiable by all work items

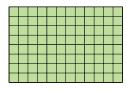


Memory, buffers and images

- Host cannot access device memory and vice versa
- Buffers transfer data between host and device memory
- Images are specially typed buffers

Device memory

- Global, host-accessible, modifiable by all work items
- Constant, host-accessible, readable by all work items

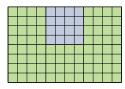


Memory, buffers and images

- Host cannot access device memory and vice versa
- Buffers transfer data between host and device memory
- Images are specially typed buffers

Device memory

- Global, host-accessible, modifiable by all work items
- Constant, host-accessible, readable by all work items
- Local, modifiable by work group

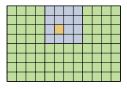


Memory, buffers and images

- Host cannot access device memory and vice versa
- Buffers transfer data between host and device memory
- Images are specially typed buffers

Device memory

- Global, host-accessible, modifiable by all work items
- Constant, host-accessible, readable by all work items
- Local, modifiable by work group
- Private, modifiable by single work item



Kernel

A kernel is a piece of C code executed by a work item

Kernel

A kernel is a piece of C code executed by a work item

To address data the work item identifies its position on the grid

}

Kernel

A kernel is a piece of C code executed by a work item

To address data the work item identifies its position on the grid

It is crucial to map work items to data according to the task and constraints

Porting code to GPUs

 Look for massive data parallel sections of code, i.e. for loop over large array is a prime example

```
for (int i = 1; i < N-1; i++)
   x[i] = sin(y[i]) + 0.5 * (x[i-1] + x[i+1]);</pre>
```

2. Create kernel and compile that replaces the inner loop body

```
i = get_global_id(0);
x[i] = sin(y[i]) + 0.5 * (x[i-1] + x[i+1]);
```

- 3. Move data to device
- 4. Create, compile and run kernel
- 5. Move result to CPU

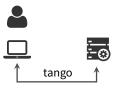
Pitfalls and solutions

- Not enough work causes underutilized PEs and poor latency hiding
 - → Use finer grid to increase number of work items
- Poor data locality reduces attainable bandwidth
 - → Adjacent work items should access adjacent memory locations
- PCIe bus can become a bottleneck (16 GB/s PCIe vs. 340 GB/s global)
 - → Keep data on GPU for successive kernel executions
- Conditional execution serializes work item execution
 - → Put condition into computation

TANGO INTEGRATION

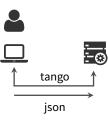
Protocol

tango server accepts compute requests



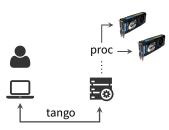
Protocol

- tango server accepts compute requests
- Client sets the json attribute and calls the Run or RunContinuous command



Protocol

- tango server accepts compute requests
- Client sets the json attribute and calls the Run or RunContinuous command
- The server spawns a new compute process identified by a process id

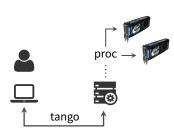


Protocol

- tango server accepts compute requests
- Client sets the json attribute and calls the Run or RunContinuous command
- The server spawns a new compute process identified by a process id

Execution models

- 1. Single-run processes ("fire and forget")
- Continuous processes (update description and re-run)



Single-run processes

Interface

```
process = PyTango.DeviceProxy('hzgctkit/process/1')
process.json = "{ ... }"
pid = process.Run()
print(process.Running(pid))  # status of, e.g. True
print(process.jobs)  # active jobs, e.g. [7041]
process.Wait(pid)
print(process.ExitCode(pid))  # return code of job
```

Remarks

- Simple to use and understand
- No prolonged hogging of resources

Continuous processes

Interface

```
pid = process.RunContinuous()
process.Continue(pid)
                     # trigger execution
process.json = "{ ... }" # update description
process.Continue(pid)
process.Stop(pid)
                         # terminate process
```

Remarks

- Allows for quicker results
- Resources are allocated as long as process is running
- Forgetting to call Stop leaks resources
- Real concurrency *not* solved yet

Future efforts

Framework

- Additional pure InfiniBand messenger besides Zeromq and MPI
- Enhance scheduling with run-time information

Tools on top

- Update TomoPy integration (interfaces are breaking constantly ...)
- Finish web-based reconstruction and visualization prototype
- Stabilize tango interface and improve error handling

Thanks for your attention.