

Material Constraints due to neutron irradiation and degradation

Anton Möslang

Institute for Applied Materials

www.kit.edu

Outline

- Materials challenges: fusion fission spallation
- Neutron irradiation: Examples of progress and issues
 - Reduced activation ferritic/martensitic steels
 - Oxide dispersion strengthened steels
 - W alloys: I-1, I-3, O-1, O-2: Yesterday
 I-7, O-5, O-6, I-8: Today
- Technical Readiness and database maturity
- Role of materials in fusion roadmaps, Need for fusion specific irradiation source

Anton Möslang

Gen IV and Fusion reactors pose severe materials challenges

S.J. Zinkle & J.T. Busby, Mater. Today 12 (2009) 12

Requirements for "in vessel" structural materials

Fission – Fusion – Spallation: Three different irradiation loadings

	Fission (Gen. I)	Fission (Gen IV)	Fusion (DEMO-PROTO)	Spallation (MYRRHA)
Structural alloy T _{max}	<300°C	500-1000°C	550-1000°C	400-600°C
Max dose for core internal structures	~1 dpa	~30-150 dpa	~50-150 dpa	≤60 dpa/fpy
Max transmutation helium concentration	~0.1 appm	~3-10 appm	~500-1500 appm (~8 times more for SiC)	~2000 appm/fpy
Particle Energy E _{max}	<1-2 MeV	<1-3 MeV	<14 MeV	several hundred MeV

Materials R&D towards: - improved irradiation resistance

- enhanced temperature window
- convincing compatibility with coolants

Displacement damage and He production in Blankets

Helium production (appm) for 100 dpa at plasma facing side

H. Tanigawa, E.Wakai 2012

- Only" the first few centimeters have a high He/dpa ratio
- In addition this part of the blanket carries the highest thermomechanical loads
- □ Therefore,
 - fission reactor irradiations are still meaningful for a significant fraction of in-vessel components
 - Nevertheless, a dedicated fusion neutron source is indispensable, but has to focus on plasma-near materials and loading conditions

Fusion Power Plants: Structural Material Challenges

Materials challenges: fusion – fission – spallation

Neutron irradiation: Examples of progress and issues

- Reduced activation ferritic/martensitic steels
- Oxide dispersion strengthened steels
- W alloys: I-1, I-3, O-1, O-2: Yesterday
 I-7, O-5, O-6, I-8: Today
- Technical Readiness and database maturity
- Role of materials in fusion roadmaps, Need for fusion specific irradiation source

Recent past and present: Qualification of RAFM steels EUROFER & F82H mod

Eurofer Blanket Module

ODS steel, diffusion welding

Main Achievements

- Meanwhile ~35 tons of EUROFER & ~50 tons of F82H mod delivered
- Broad based Qualification Programme, including joining technologies and corrosion
- Fission neutron based materials data up to ~70 dpa
- Implementation of EUROFER database into the RCC-MRx code for ITER Test Blanket Modules ongoing

Future Mission

- Increase upper operation temperature and improve neutron/He/H embrittlement
- by fine tuning of alloying elements

RAFM 8-10%CrWVTa-Steels without Helium: Tensile results after neutron irradiation

N. Hashimoto et al., Fus.Sci.Tech. 44 (2003)

Below ~400 °C: - Strain localization due to dislocation channeling
 Despite the very small uniform elongation rupture stress still high

Substantial irradiation induced hardening below T_{irr} ~ 420°C by interstitial type defects

 $T_{irr} = 300^{\circ}C$:

- Homogeneous distribution of point defects and dislocation loops
- Dislocation loops:
 - $\frac{1}{2}$ <111> Burgers vector
 - 5-25nm diameter

Concentration of irrad. induced defects

≤415 appm He: Almost no effect on tensile properties at <u>small strain rates</u>
 5800 appm He: Entirely brittle fracture; total loss of plasticity

18-22 May 2015, Aix-en-Provence, France

Fracture behavior of tensile tested EUROFER 16 dpa, $T_{irr} = T_{test} = 300$ °C

EUROFER97, <10 appm He EUROFER-type, 415 appm He

E. Materna-Morris et al., JNM 386-388 (2009) 422-425 M. Klimenkov et al., Micron 46 (2013) 51–56

¹⁰B-doping: He and Li effects cannot really be decoupled

 $\begin{array}{rrr} n + {}^{10}\text{B} \rightarrow ~{}^{4}\text{He} + ~{}^{7}\text{Li} + 2.7895 \ \text{MeV} \\ \text{range of He} \ (1.0 \ \text{MeV}): & 1.6 \ \mu\text{m} \\ \text{range of Li} \ (1.8 \ \text{MeV}): & 2.0 \ \mu\text{m} \end{array}$

18-22 May 2015, Aix-en-Provence, France

Possible steps towards a fusion design code: Tensile properties as example

In the style of H. Tanigawa, E.Wakai

- □ <u>Small strain rate</u>: Critical condition 40~50 dpa / 400~500 appm He?
- This might be also the parameter window for initial DEMO and 1st stage of IFMIF and related design code development

Ductile or brittle?

Indispensable for safety, economy & life-time prediction Artsruhe Institute of Technology

The accurate prediction of the ductile-to-brittle-transition temperature shift is fundamental for ensuring the structural integrity of reactor pressure vessels (Fission) and of blanket/divertor (Fusion)

Ductile or brittle? The importance of strain rate ϵ : Example: Eurofer, 16 dpa, B-doped, $\dot{\epsilon} \approx 10^2 s^{-1}$

E. Gaganidze et al., J. Nucl. Mater. 417 (2011)93-98

Hysteresis loops very similar for irradiated and non-irradiates samples

0,4

after irradiation

Cyclic softening somewhat higher

TEM analysis, EUROFER97 (as received)

0 dpa, Before fatigue testing

- Microstructure typical for tempered martensite
- High dislocation density

After fatigue testing, $\Delta\epsilon$ = 0.5 %

- Pronounced sub-grain formation
- Low dislocation density within sub-grains
- Dislocation pile-up at sub-grain boundaries
- Also sub-grain formation, but less obvious
- High stability of irradiation induced defects, despite cyclic motion of dislocations

22

PFMC-15

18-22 May 2015, Aix-en-Provence, France

Is there a saturation of properties with increasing displacement damage ?

TEM Microstructure

Before testing

2 µm

After Fatigue testing at 550 °C $\Delta \epsilon$ = 0.45 %, N_f = 60850

Anton Möslang

24

18-22 May 2015, Aix-en-Provence, France

Neutron spectra effects: Tensile properties

Hydrogen effects: Retention of hydrogen in Fe and austenitic Steel 316

F.A. Garner; J. Nucl. Mater. **356** (2006) 122-135

S.J. Zinkle, A. Möslang, Fus. Engin. and Design 88 (2013) 472– 482

- Hydrogen effects may become a serious issue in fusion environments
- Typical for 14 MeV fusion neutrons is the simultaneous production of dpa, hydrogen and Helium → Intense fusion neutron source indispensable for realistic validation

Materials challenges: fusion – fission – spallation

Neutron irradiation: Examples of progress and issues

- Reduced activation ferritic/martensitic steels
- Oxide dispersion strengthened steels
- W alloys: I-1, I-3, O-1, O-2: Yesterday
 I-7, O-5, O-6, I-8: Today
- Technical Readiness and database maturity
- Role of materials in fusion roadmaps, Need for fusion specific irradiation source

International challenge: Development of nanoscaled iron based "super alloys" (RAF-ODS)

Nanoscaled ODS-steels

P. He, M. Klimenkov et al., J. Nucl. Mater. 428 (2012) 131-138

1000 appm He impl. at 500°C

A. Ryazanov et al; JNM (2013) 153-157

- Nano-scaled ODS particles like Y₂O₃ or Y₂Ti₂O₇ are efficient trapping centers for diffusing alloying elements (Cr, V) and irradiation induced defects (vacancies, He)
- Therefore, nanoscaled ODS steels have potential for outstanding aging and irradiation resistance

ODS EUROFER after Neutron irradiation: Substantial improvement of tensile properties

Is it possible to overcome the cyclic softening phenomena of ferritic-martensitic steels?

Nano-scaled ODS particles are extremely stable, that is:

- (almost) no cyclic softening or dislocation channeling
- Suppression of alloy dissolution and aging due to their high sink strength

9Cr ODS steel fuel pins: Production in Japan, irradiation in FBR BOR60, Russia

		Monitor	Vipac fuel	Cladding tube			ixture Lower end plug
		1				Y	
						BC358	BC359
The state	4. Ni	L			Clad. Temp. °C	670	720
					Burnup at%	1	5
	- Ann				Deservice	-	76

S. Ukai et al., Hokkaido University, Japan

Fig. 12 Appearance of fabricated ODS fuel assemblies (BC358E and BC359E)

Materials challenges: fusion – fission – spallation

- Neutron irradiation: Examples of progress and issues
 - Reduced activation ferritic/martensitic steels
 - Oxide dispersion strengthened steels
 - W alloys: I-1, I-3, O-1, O-2: Yesterday
 I-7, O-5, O-6, I-8: Today
 - Technical Readiness and database maturity
- Role of materials in fusion roadmaps, Need for fusion specific irradiation source

Anton Möslang

Application window of RAF(M)-ODS-Steels - schematic -

□ Operation window 350-550 °C: Are RAFM steels limited to ~ 50dpa at the FW?
 □ Fusion relevant data well beyond 50 dpa urgently needed → fusion n-source

Design code extension by RAFM steels

In order to get the licensing (and to protect the investment) all these issues must be taken into account in the design codes used during the design phase Possible steps towards a fusion design code:

Fusion-like irradiation data are needed

- To provide timely a fusion relevant materials database
- To monitor a few properties at high doses (to see the potential of the material for advanced DEMOs and FPP)

Design code qualification, e.g. for RCC-MRx

MAIN	RAFM_Fatigue LIST SEARCH REPORTS PRODUCT COMPOSITION TENSILE IMPACT FRACTU PRODUCT	RE CREEP SUMMARY QUIT FIRST	Collection of broad based materials data
	Alloy Metal Designation Manufacturer Weight_kg Eurofer HIP_Powder Eurofer97 powder CEA/G Heat Product No Sub-Product No CW % Thick (mm) E83699 E6 100	Navigate	
HT (C 979	HEAT TREATMENTS) HT (min) Temper (C) Temper (min) PWHT (C) PWHT (mIn) Aging (C) Aging (h) 111 739 222 4h 1040C Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Image: Colspan="2">Aging (h) 111 739 222 4h 1040C Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2"	LAST Find Q	Validation by expert groups
Stal	te Irr. Facility Experiment Position in Rig Irr. T (C) Dose (dpa) He_appm HFR SOSIA-3 500 2.5 TEST	Find All Browse	code qualified "Materials
Plan of C	e Data Country Test No Environment Extens. Norme Type Cycle R 1st Cyc RG Netherland 315 air axial ASTM Push-Pull Triangular -1 Tension SPECIMEN Jutting Sp. Drawing Orient Strain Rate 10 ³ Sp. No Form t or d (mm) Total L. Gauge (mm)	New +	Properties Handbook"
	RH-MMI- L 10 H503 C 3 45 7.5 RESULTS	Delete	
Test T (500 Cyclic H N St	C) ΔEp ΔEe E Sao s _{ipo} St Sc ΔSa/2 Stmax N_stmax Stmax Stmax	Import T	Distribution to manufacturers and designers for comments
Sc State_t	360.0 353.0 306.0 258.0 Relaxation Cycle Hold_T Srtmax Srtmin Srt State_c Hold_C Srcmax	Print A	
Obser	vations References J. Rensman, private comm., NS0 & Dep & Dee added from NRG-21641/09.95503, 20 May 2009		RCC-MRx Design code implementation of the new material class
88	Anton Möslang PFMC-15	18-22 Ma	ay 2015, Aix-en-Provence, France

Irradiation effects: Materials Database Maturity

Complimentary: R. Kurtz, PNNL

	1 st DEMO Blanket			2 nd DEMO Blanket					Adv. DEMO										
Data base need	<20	dpa	/200)app	om I	He	~50	dpa	/500	Dapp	om I	He	>10	0 dp	oa/1	000a	appr	n He	Э
Materials	RAFM	FM-ODS	M	SiC	Be	Li ceramic	RAFM	FM-ODS	M	SiC	Be	Li ceramic	RAFM	FM-ODS	M	SiC	Be	Li ceramic	RAFM
Irradiation effects																			
Hardening/Embrittlement																			
Phase stabilities																			
creep & fatigue																			
Volumetric swelling																			
High Temp He&H effects																			
Adequate knowledge base exists Note: He levels are only for FM steels Partial knowledge base exists																			

No knowledge base

PFMC-15

Suggested TRLs for in-vessel materials

According to M.S. Tillak et al, ICFRM-15, 2012

	Concep	ot develo	pment	Proo	f of Prin	ciple	Proof of Performance							
TRLs	1	2	3	4	5	6	7	8	9					
Material class														
RAF														
ODSS 9Cr(12)					TLR 5-6-7 not achievable b									
ODSS 13-15Cr					"ł F	"human resources". Facilities are needed at								
W allow structure					10-100-1000 Mio\$ level									
Functional W														
SiC/SiC														
Beryllium														

Role of Materials in Fusion Road Maps - simplified -ITER, DT-phase Early DEMOs FPP beyond 2027 beyond 2060 • Start operat. EDA end 🔶 ~2030 20 dpa 1st blanke **D-Li type fusion** preferable 50 dpa ucensing? **Database** n-source option 100 dpa, small volume "Simulation": Fission reactors, ion implantation, spallation ongoing **Materials** Plasma based n-sources (e.g. FNSF): For DEMOs ≤10 dpa/fpy; 0.1-0.3 duty cycle, start>2030 40 dpa (≥ 15 yrs) not before 2045 too late Anton Möslang PFMC-15 18-22 May 2015, Aix-en-Provence, France 41

Pillars of the EU Fusion Materials Programme

	FF	77		Horizon 2020								
10	11	12	13	14	15	16	17	18	19	20		

Materials Technology for ITER TBMs and DEMO F4E coordinated EUROFER, Joining technology, Be, Li ceramics,....

Fusion Materials for DEMO; Advanced Materials EUROFUSION coordinated Improved RAFM steels, ODS alloys, W components

Broader Approach, Materials funded by JA and EU countries Welds, BeTi, Li ceramics

Bottleneck: DEMO specific irradiation and PIE programmes

International Road Map

High-temperature materials are at a critical path

Acknowledgements:

- E. Gaganidze
- A. Ibarra
- R. Kurtz
- R. Lindau
- E. Materna-Morris

Anton Möslang

- H.Ch. Schneider
- H. Tanigawa
- S.J. Zinkle

DEMO

PFMC-15

18-22 May 2015, Aix-en-Provence, France

3 dpa