<u>Arthropod Structure revealed by ultra-fast Tomography and Online Reconstruction</u>

A new method for high-speed X-Ray tomography

Science-driven development of

- Management of large datasets
- Cloud-based analysis environment
- Advanced segmentation of 4D X-ray images

Network for functional morphology and systematics:

SPONSORED BY THE

Use Case: Functional Morphology astimic

Further Use Cases

Use case 2:

Natural heritage in amber

Staatliches Naturkunde Museum Stuttgart

High-throughput scans with sample changer

Use case 3: Bionic of walking

Online measuring forces in ants

University of applied sciences Bocholt

In-vivo

Micro-CT-of a unkown wesp in amber Hymenoptera: Chalcidoidea: Pteromalidae Collection SMNS, BB-2621

Ultrafast Synchrotron Tomography

Morphological dynamics can be recorded due to:

- optimized X-ray setup
- online tomographic reconstruction
- interplay of high time and space resolution

Example: T. dos Santos Rolo et al. PNAS 2014;111:3921-3926

from Helmholtz review:

"[...], studies of biological and other complex systems will be of highest priority in the foreseeable future."

But:

- Analysis is challenging, requires interdisciplinary teams
- Data rates and datasets are huge (> 100 GB)

New Technologies at ANKA

2011

UFO Camera

DAQ Hardware UFO Project

BMBF German-Russian

Funding

Computing & Algorithms

2012 UFO DAQ Platform

> DMA-IPCore 3GB/sec

Beam monitoring KAPTURE

IR Spectrometer Fast control System "Concert"

Linux drivers libUCA

Tango interfaces

2011 UFO Computing Framework

Python 2 GPU Compiler

Multi-core/node Scalability

Infiniband DAQ Network

Analysis & Data

2013 ASTOR BMBF

Workflows

VMs for Analysis

3D Web Visualization

4D Segmentation

In use at: ANKA (IMAGE, CT-LAB, ...), SIBIR-2, ESRF ID19, PETRA-3, HZDR, ...

UFO Parallel Processing Framework

ANKA

ESRF

HZDR

PETRA 3

- Free and open-source
- Supports OpenCL parallel hardware
- Hardware-specific optimizations
- Fast pipelined architecture
- Scheduling across multiple devices and nodes
- Introspection interface to Python and other scripting languages
- Integrated with Tango control system

Reconstruction w single GPU (GB/s)

Next: Real-time Computing with GPU Clusters

- GPUs enable
 - Advanced algorithms
 - Higher data rates
- Problem:
 - Data transfer
- Solution:
 - Distributed DAQ Systems

DAQ + GPU + fast storage in a cluster'

- Status: reconstruction in few seconds
- Goal: Data rates > 5 GB/s

Virtual Analysis Infrastructure

ASTOR architecture

Computer infrastructure

Management Endpoint for VMs

Web-Portal Requirements

- Manages data sets and analysis
 - Data catalog
 - Ordered by data types (sample, measurment, analysis, publication, ...)
 - Invite colleagues (r) and share ownership (r/w)
 - References by publications
- Fast 3D Visualization
 - Basic filters
 - Measurement of dimensions
 - Alignment
- VM management
 - Start/Stop, access path
 - Manage GPUs + Licenses for commercial apps (e.g. Amira, vgStudio)
- Inline annotations

YVAINE - VM Management Web-Portal astwice

| Version 0.1.0 | © 2014 by V. Mauch & M. Bonn (RG-CC, SCC)

| Layout based on YAML | W3C XHTML

WAVe – Web Analysis of Volumes

Goals:

- Fast preview of reconstructed raw data
- Cache archived data

Requirements

WAVe

- is used for « preview »
- includes pre-processing + caching
- provides basic analysis functions
 (e.g. background reduction, filters, measurements)
- provides zooming
- works with big datasets > 100GB
- works with 3D + time
- has low latency
- scales for many users
- provides intuitive usage
- is easy to maintain

Volume rendering by ray casting

- Splits volume transparent layers
- For each layer texure maps are calculated
- Depending on the orientation textures are added
- Algorithm by Congote et al , VISIGRAPP 2009

Texture map

Prototype: 3D Visualization in the Web astar

Segmentation methods

- Goals
 - Improve manual segmentation in slices
 - Transfer to neighboring slices
 - Transfer to sequential time steps
- Under evaluation: Active contour models

Segmentation methods

- Goals
 - Improve manual segmentation in slices
 - Transfer to neighboring slices

Segmentation methods

- Goals
 - Improve manual segmentation in slices
 - Transfer to neighboring slices
 - Transfer to sequential time steps
- Under evaluation: Active contour models

Algorithms

- Idea: Given initialization, gradual (supervised) improvement
- Methods/Algorithms:
 - Gradient vector flow
 - Global vs local criteria

Results:

- Sensitive to initialization
- Sensitive to parameter, selection of free parameters?
- Calculation is slow, but acceleration by GPU possible

Next:

- Stochastic Partial Differential Equations
- Automatic calculation of weighting parameters
- Application to 3D datasets
- Implementation of algorithms in Amira, MITK

Processing

Figure: xaqi.png

Figure: xavw.png

	xaqi (304 pixels)		xavw (1304 pixels)		
	GVF	ACWE	GVF	ACWE	
CPU only	63 sec	39 sec	738 sec	646 sec	
GPU	29 sec	16 sec	141 sec	26 sec	

i5-4670 CPU 3.40GHz GeForce GTX770

Image Processing Tools

Software requirements:

- Multi-platform;
- Extensibility:
 - Plugin System;
 - Open Source license.
- Development:
 - Community Size: > 3 person;
 - Last Update: 2014 year;
 - Programming Language: C / C++ / Python;
 - Developer Documentation.

Segmentation toolkits

Requirements	Software					
	Amira	ilastik	ITK-Snap	MITK	Seg3D	3D Slicer
Simple interface	Yes	Specific	Specific	Yes	Yes	Yes
Work with 4D data	No	Yes ¹	No	No	No	No
Undo and Redo	Undo	No	Yes	Yes	Yes	Yes
Cancellation of the processing	No	No	No	No	Yes	No
Zooming	Fixed	Free	Free	Free	Free	Free
Configurable key bindings	No	Yes	Yes	No	No	No
Labels interpolation	Yes	No	No	No	Yes	No
Labels propagation	No	No	No	No	No	No
Labels management:						
Add and Remove	Yes	Yes	Yes	Yes	Yes	Yes
Reordering	No	Yes	No	Yes	No	No
Multiple selection	No	No	No	Yes	No	No
Grouping	No	No	No	No	No	No
Documentation	Yes	Yes	Yes	Yes	Yes	Yes
Session saving and loading	Yes	Yes	Yes	Yes	Yes	Yes

¹ ilastik: Each 3D volume in a 4D data set is processed independently. 4D Volume is represented by several 3D TIFFs.

Large datasets

Full Volume: 1968 x 1968 x 1496

Software	1100 slices (4.2 Gb)	1200 slices (4.5 Gb)	Full (5.5 Gb)	
Seg3D	OK	Can't open	Can't open	
ilastik	Can't open	Can't open	Can't open	
ITK-Snap	Crash	Crash	Crash	
MITK	OK	OK	OK	
3D Slicer	OK	Crash	Crash	

Segmentation platform?

Open source tools

- All free tools base on VTK/ITK
- Candidates:
 - MITK (German Cancer Research Center, Heidelberg) and 3D Slicer (Harvard University)
 due to their architecture, documentation and nice plugin system.
 - Seg3D (University of Utah Scientific Computing and Imaging (SCI) Institute) due to simple architecture and Photoshop-like interface.

Commercial tools

- Negotiations with FEI/Amira on extended programming interfaces
 - Development option available
 - FEI seems to be interested in user feedback

Summary

Data management

- Remote access to imaging application is possible
 - Selected: Vmware Horizon
- Virtualization of GPUs and Infiniband adapters
 - VMs are used for segmentation + development

Visualization

- Fast browsing of volumetric data is crucial
 - Multi-level caching
 - 3D data in the web is possible

Analysis

- 3D + time datasets requires dedicated analysis methods
 - Tools can't handle time sequences (Open source + Amira)
 - Problems with large TIFF files and memory management