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• Helium and hydrogen isotopes are produced in Be by nuclear transmutations 

as well as implanted from the hot plasma. 

• He and H can be trapped within vacancies and vacancy clusters produced 

by neutron irradiation and facilitate formation of gas filled bubbles.  
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Density Functional Theory (ab initio) 

VASP 4.6 / VASP 5.2 

Generalized Gradient Approximation (GGA) 

Pseudopotentials:  

Plain Augmented Waves (PAW) 

Gamma centered Monkhorst-Pack k-point 

grid  13x13x13 

Energy cutoff = 450 eV 

Ab initio Molecular Dynamics (VASP) 

Time step 0.3 fs 

Run duration ~3000-4000 steps (~1 ps) 

Simulation cell size: 4x4x2 = 64 atoms 

Temperature: 200-1000 K 

k-point grid: 7x7x7 

Energy cutoff 250 eV 

Simulation methods 

25.05.2015 P. Vladimirov, Modelling of Hydrogen Interactions with Be Surfaces 

G.Kresse, J.Hafner, Phys. Rev. B (1993) 47, 558; ibid. (1994) 49, 14251;   

G.Kresse, J.Furthmüller, Comput. Mat. Sci. (1996) 6, 15;   

G.Kresse and J.Furthmüller, Phys. Rev. B (1996) 54, 11169 
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H on Be(0001) surface: Adsorption sites 
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• Two stable adsorption sites for hydrogen (hcp and fcc) exist at 

(0001)Be surface 

• Hydrogen coverage calculated as a fraction of occupied sites (1ML – all 

sites occupied) 
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• Hydrogen atoms at the surface prefer to stay far from each other 
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H2 adsorption on H pre-covered surface 

• There is no hydrogen adsorption on fully 

precovered (0.5 ML) Be (0001) surface 

 

• One H-vacancy is also insufficient for adsorption 
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H coverage 0.5ML with two adjacent vacancies; 

T=200K 

• Two hydrogen vacancies on H-covered surface are required for H2 adsorption.  

• The adsorption energy barrier on pre-covered surface is higher than for the 

clean surface. 

• The energy of incident molecule should be in a rather narrow range! 
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Hydrogen at Be(0001) surface: Desorption 
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Surface coverage 0.5ML 

(half of sites occupied by H) 

hcp sites 

33 fs 

Surface coverage 1.0ML 

(all  sites occupied by H) 

hcp-fcc sites 

22 fs 

H2 

• At surface coverage of 0.5 ML severe surface reconstruction is observed, but 

no hydrogen desorption occurs.  

• At surface coverage of 1.0 ML immediate associative desorption occurs. 

 Maximum critical H coverage of 0.5 ML 
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Beryllium 
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Be principal surfaces 
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The lowest surface energy has  

• basal (0001) plane,  

• followed by prismatic I 11 00  and  

• pyramidal II 2 112  surfaces  

The last two being very close in energy. 
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H adsorption sites on Be principal surfaces 
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Adsorbed hydrogen modifies surface energy 
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Single hydrogen atom adsorption results in notable 

decrease of surface energy in most of the cases. 
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Adsorbed hydrogen modifies surface energy 
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Single hydrogen atom adsorption results in notable 

decrease of surface energy in most of the cases. 

 

How multiple hydrogen adsorption would affect the surface energy? 
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Adsorbed hydrogen modifies surface energy 
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single H adsorption 

• At high coverage: 

Increase of Esurf due to 

H-H repulsion 
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Adsorbed hydrogen modifies surface energy 
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• At low coverage: 

Decrease of Esurf due to 

single H adsorption 

• At high coverage: 

Increase of Esurf due to 

H-H repulsion 

 Complex modification 

of hydrogen-filled gas 

bubble faceting 
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Hydrogen bubble faceting 

P. Vladimirov, Modelling of Hydrogen Interactions with Be Surfaces 25.05.2015 

0 ML 

0.08 ML 

0.125 

ML 

0.21 ML 

0.23 ML 

0.5 ML 

Equal H-coverage for all faces 

was assumed 



IAM-AWP / MW 65 

Shape of gas bubbles in Be 

P. Vladimirov, Modelling of Hydrogen Interactions with Be Surfaces 25.05.2015 

S.P. Vagin et al. J. Nucl. Mater. 

258-263 (1998) 719-723 

V. Chakin, Z. Ostrovsky,  J. Nucl. 

Mater. 307–311 (2002) 657–663 

n-irradiated (He-bubbles) H-implanted (H-bubbles) 
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Equilibrium shape of bubbles (Wulff construction) 
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25.05.2015 P. Vladimirov, Modelling of Hydrogen Interactions with Be Surfaces 
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Equilibrium shape of bubbles (Wulff construction) 

HRTEM investigations of a 8 nm bubble in a pebble irradiated at 686 K: the 

bubble with a regular hexagonal form and with an elongated shape 

Taken from: M. Klimenkov et al. J. Nucl. Mat. 443 (2013) 409-413. 

“Comparison” with experiment 

basal 

prismatic type I 

prismatic type II 

pyramidal type I 

pyramidal type II 

0 ML 0.23 ML 0.5 ML 
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http://www.sciencedirect.com/science/article/pii/S0022311513009380
http://www.sciencedirect.com/science/article/pii/S0022311513009380
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Equilibrium shape of bubbles (Wulff construction) 

“Comparison” with experiment 

Taken from: S.P. Vagin et al. J. Nucl. Mat. 258-263 (1998) 719. 

Cavities in hydrogen-implanted beryllium after annealing for 15 min at 600°C. 

basal 

prismatic type I 

prismatic type II 

pyramidal type I 

pyramidal type II 

0 ML 0.23 ML 0.5 ML 
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H2 adsorption and desorption on clean and H precovered Be(0001) 

surface has been studied 

Hydrogen atom is adsorbed without barrier, while ~0.8 eV should be 

overcome during H2 molecule adsorption 

Hydrogen adsorption is completely blocked by H-coverage of 0.5 ML 

At least two vacant sites are necessary for H2 adsorption on H 

precovered surface 

There is a critical H surface coverage of 0.5ML, above which non-

activated H2 desorption occurs 

H repulsion on the surface results in severe surface reconstruction 

Adsorbed H significantly modifies surface energy of various Be 

surfaces, so that equilibrium shape of H-covered bubble is changed 

drastically 

P. Vladimirov, Modelling of Hydrogen Interactions with Be Surfaces 25.05.2015 

Conclusions 
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Thank you for your attention! 


