

High frequency technologies for high-data rate DAQ systems

M. Caselle, S. Cilingaryan, T. Dritschler, A. Kopmann, L. Rota, U. Stevanovic, M. Weber

Matter and Technologies Kickoff Meeting. 24-26 February 2015 DESY Hamburg

Outline

- Introduction to ANKA terahertz Coherent Synchrotron Radiation (CSR)
- Cryogenic terahertz detectors technologies
- □ High-bandwidth front-end
- Picosecond pulse sampling "KAPTURE" system and beam test results
- New DMA-PCIe Readout compatible with GPU Direct access
- Conclusions

ARD C DTS Pico / Femto second Beam diagnostic, detectors and DAQ system

Terahertz Coherent Synchrotron Radiation at ANKA

Ultra-fast THz Detectors

To detect and study of the emission characteristics of CSR in the THz range \rightarrow high time accuracy detector, spectrum of hundred GHz -> Terahertz

[1] A.D. Semenov, et al., IEEE Transactions on Microwave Theory and Techniques 55 (2007) 239
 [2] P. Thoma, J. Raasch, et al., IEEE Trans. Appl. Supercond., Vol. 23, No 3, pp2400206, June 2013
 [3] A. Semenov, et al., IEEE Electron Device Letters 31, (674) 2010

ASSOCIATION

Pulse with repetition rate 500 MHz

KAPTURE - system

Low Noise Amplifier (LNA)

- MCM-D technology with new PCB materials for Microwave/RF design
- MMIC based on GaAs technology
- □ Bandwidth DC- 55 GHz and Flat gain : **12 dB up to 48 GHz**
- □ Under development \rightarrow new LNA with bandwidth: **0.5 65 GHz, gain = 10 dB**

Wide-Band power divider

Power divider 1:4 outputs

Components not available on the market

Power divider 1:2 outputs

KAPTURE sampling board

- ✓ Minimum sampling time: 3 psec →
- >300GS/s (equivalent sampling mode)
- ✓ 12 bit ADC resolution
- ✓ Configurable for the readout of up to 4
 ultra-fast detectors in parallel

First beam test setup / May 2014

Time characterization with YBCO detector pulse

YBCO detector pulse acquired using equivalent sampling method by KAPTURE: minimum sampling time **3 ps**, pulse repetition rate **500 MHz**

Pulse measured by real-time oscilloscope (bandwidth 60GHz)

Time characterization with YBCO detector pulse

YBCO detector pulse acquired using equivalent sampling method by KAPTURE: sampling time **3 ps**, pulse repetition rate **500 MHz**

The pulse width (FWHM) measured by KAPTURE is 42 ps in agreement with the measurement by fast real-time oscilloscope

HELMHOLTZ

Michele Caselle High frequen

High frequency technologies for high-data rate DAO systems

Beam test with YBCO detector and KAPTURE

Performance real-time mode:

- Each pulse acquired by 4 samples
- Pulse repetition rate of 500 MHz
- Pulse reconstruction (GPU) and measurements of:
 - Pulse amplitude (mV)
 - Peaking time (ps)
 - Pulse width (ps)
- Fast Fourier Transform (GPU)

An Ultra-fast Picosecond Digitizer for Coherent Synchrotron Radiation

- Simultaneous monitor of CSR fluctuation of all buckets. (multi-bunch mode)
- Continuous turn-by-turn acquisition

 Studies of CSR fluctuation at different bunch current regimes

> Opens up new diagnostic possibilities such as instantaneous measurement of bursting threshold and longitudinal particle dynamics

Frequency behaviour of CSR @ different bunch current

High-speed DAQ architecture and real-time elaboration

- High flexibility readout card \rightarrow based on **FPGA**
- Fast data throughput \rightarrow based on last generation of "commercial" data link **PCIe/InfiniBand**
- High-flexibility real-time elaboration \rightarrow based on **GPU**

Point – to – point DAQ architecture

- \geq Very-fast data link \rightarrow to move data from data-source to real-time elaboration
- Real-time elaboration \rightarrow by Graphics Processing Unit (GPU)

High-speed DAQ architecture and real-time elaboration

- High flexibility readout card \rightarrow based on **FPGA**
- Fast data throughput \rightarrow based on last generation of "commercial" data link **PCIe/InfiniBand**
- High-flexibility real-time elaboration \rightarrow based on **GPU**

Point – to – point DAQ architecture

- \geq Very-fast data link \rightarrow to move data from data-source to real-time elaboration
- Real-time elaboration \rightarrow by Graphics Processing Unit (GPU)
- GPUDirect data access \rightarrow data write into GDDR5 Memory and not in the system memory

Novel concept of DMA

Operations:

- 1. Driver write the command and Descriptors in the FPGA and memory blocks allocation (Initialization)
- DMA Start by REQuests to CPU and waiting the ACKnowledge signal 2.
- DMA load the descriptor from the FIFO and fetch the DATA 3.
- Initiated the Memory Block and 5. Data transfer from I/O \rightarrow to Block Memory $\beta_{\text{HELMHOLTZ}}$ 4.
- Update the Status \rightarrow number of blocks written, address, status .. 6.

ASSOCIATION

Comparison with commercial PCIe-DMA architecture

Virtex 6 -> XC6VLX240-2 FF1759

High frequency technologies for high-data rate DAO systems

PCIe-DMA architecture - performance

L. Rota & M. Caselle "High-throughput PCIe DMA architecture for Gigabyte Data Transmission". **IEEE-Transactions on Nuclear Science**. Real Time Conference 2014

✓ Average data throughput of 3.5 GB/s (DMA max data transfer @ 4 GB/s).

✓ No bit errors observed (tested up to several TB of data exchanged)

PCIe-DMA for generation 3

Michele Caselle

Preliminary results of a DMA – PCIe based on **GEN 3 x8 lanes**

IPE-DMA for PCIe Gen3 - Memory Write Performance

Data Transfered (Bytes)

No optimized firmware and driver Low occupancy NO errors \rightarrow detected during the data transferred

High frequency technologies for high-data rate DAO systems

KIT-DMA for High Energy Physics DAQ

Alice DAQ

ALICE C-RORC \rightarrow RobinNP

ATLAS DAQ

ATLAS – FELIX (FE Link eXchange)

Are interested in KIT-DMA for HL-LHC upgrade

Michele Caselle

Conclusions

□ Kapture \rightarrow proper instrumentation for picosecond diagnostic beam and CSR studies.

□ Thanks to Kapture \rightarrow published more than 20 scientific papers on CSR studies for future accelerators

Synchrotron community is interested in Kapture

□ New DMA-PCIe Readout compatible with GPU Direct access

□ HEB community interested at KIT-DMA logic

□ Future Kapture → based on SiGe or different monolithic integrated circuits

Thank you for you attention

