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Introduction

123.0

Atmosphere: 829 Pg C
PgCyrt 1187

Photosynthesis
Pg C yrl
Vegetation: Respiration/
~550 Pg C Combustion

Mortality/
turnover ? Pg C yrl

Soils/litter:
~2000 Pg C

Changes in mortality rate
fundamentally change the carbon
storage capacity of ecosystems

Numbers, Ciais et al. (2013)



Introduction: Mortality

Routes to tree mortality:

1) “Inability to acquire or mobilise sufficient resources to heal injuries or
otherwise sustain life” (Waring, 1987)

e Shading

* Nutrient limitation

* Water stress

e Chronic herbivory

* Disease

* Age-related degradation

2) Exogenous, stand-destroying, disturbance events

* Fire
Wind-throw
e Acute herbivory (e.g. insect outbreaks)

* lLogging



Introduction: Mortality

Routes to tree mortality:

1) “Inability to acquire or mobilise sufficient resources to heal injuries or
otherwise sustain life” (Waring, 1987)

e Shading

* Nutrient limitation

* Water stress

e Chronic herbivory

* Disease

* Age-related degradation

2) Exogenous, stand-destroying, disturbance events

* Fire

Wind-throw

e Acute herbivory (e.g. insect outbreaks)
* lLogging

Focus here on disturbance mortality



Introduction: Disturbances

Disturbances are distinct processes with their own drivers

Disturbance damage in Europe
(% timber stock) (Seidl et al., 2014)

We have reason to think that
disturbance rates will increase in
the future:
* Changing climate moves pests &
diseases into new ranges
* Leaves become less nutritious
under high [CO,], requiring
insects to eat more
* Increasing climatic extremes:
» More hot/dry weather
increasing fire incidence?
(link not trivial)
» Water stress makes trees
more vulnerable to biotic
attack



Introduction: LPJ-GUESS

Disturbance mortality in LPJ-GUESS

Prognostic fire model:

 GLOBFIRM (Thonicke et al., 2001)
or SIMFIRE (Knorr et al., 2014)
* PFT-specific fire resistance

Stochastic background disturbance:

* Likelihood of stand-destroying
disturbance in any one year drawn
from a probability distribution with
a characteristic return period (7).

e 100 years is standard global value
for LPJ-GUESS.

* Intended to represent e.g. wind-
throw, insect attack, logging.

Modelled area (grid cell)

Replicate patches in various
stages of development after
disturbance

Patch
0.1 ha
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Effect of changing disturbance rate: Methods

Basic set-up:
Historical simulations under CRU climate and [CO,] 1850-2005
No prognostic fire

T=1000, 400, 200, 100, 50, 25 years

Treatment of disturbance in 3 different ways

1. All trees killed, all biomass to litter (e.g. intense insect outbreak)
2. All trees killed, 70% of wood biomass removed (e.g. logging)

3. Fire, trees killed according to PFT likelihoods

Results are for forested land only
(masked by HYDE 3.1 current land-use)



Disturbance-induced changes in dominant PFT
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Effect of changing disturbance rate: Carbon storage
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Effect of changing disturbance rate: Carbon storage
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Difference in carbon pool size (Pg C)
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Effect of changing disturbance rate: Timescales

Fixed climate and [CO,], sudden change in disturbance rate
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Effect of changing disturbance rate: Future carbon sink

RCP 8.5 climate and [CO,], sudden change in disturbance rate at 2005
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Effect of changing disturbance rate: Future carbon sink

RCP 8.5 climate and [CO,], sudden change in disturbance rate at 2005
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Actual disturbance rates

Standard LPJ-GUESS disturbance return period for forested areas
(combined fire and background)




Actual disturbance rates

Hansen et al. (2013) calculate forest loss over 2001-2012 from satellite
measurements at 30 m resolution
Here recalculated to give T at 1° x 1° resolution (land-use change corrected)

100 200 300 400 500 600 700 800 900 1000



Actual disturbance rates

LPJ-GUESS _
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Actual disturbance rates

LPJ-GUESS =5 7 e & Global mean is T =72 years
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Perhaps we disturb too
much in LPJ-GUESS?
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Synthesis of biotic disturbance rates (M. Kautz)
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Actual disturbance rates: Biotic attack

Synthesis of biotic disturbance rates (M. Kautz)
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Conclusions

Total carbon storage and ecosystem composition is very sensitive to
disturbance. It could define terrestrial biosphere carbon fluxes over
the next century.

Although the focus here was on “disturbance”, the character of
these results holds for mortality more generally (effect in the DGVM
is basically the same), e.g. drought mortality.

We currently have a very poor understanding of the importance of
different tree mortality mechanisms globally.

Effective prognostic modelling of disturbances and other mortality
mechanisms is crucial to understand forest dynamics under
environmental change, and for reliable projections of future carbon
storage.



What processes drive mortality in current DGVMs?

How do you kill your trees?

40
 What processes are driving

differences in turnover rates (esp.
307 1 mortality) between the DGVMs?

a5l 1 ¢ Realism - are known mortality
events captured? By which
mechanisms? (Allen et al., 2010,
drought; Kautz et al., in prep; FAO)
Do 2" generation DGVMs do
better? Do they have fundamentally

| different responses under climate
Turnover Fire Disturb Growth Bioclim -ve biom Allom Change?
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Possibilities:

a) Addition of mortality flux outputs to ongoing activities (e.g. GCP)

b) PLUME emulator offer possibility to compare the effects of mortality
mechanisms in a framework where everything else is standardised.
Clear attribution. Possibility to swap mechanisms between models.
Requires only a few extra outputs to simulations.



