

NURESAFE WP1.4 HIGHER-RESOLUTION VVER MSLB

Fine mesh preprocessor for COBRA-TF

Slides to complement KIT part in presentation:

Overview of CTF integration and N/TH coupling for hexagonal geometry

J. Jimenez, V. Sanchez

Presented by J. Jimenez

victor.sanchez@kit.edu or javier.jimenez@kit.edu

NURESAFE

Outline

- Since the last meeting a good progress was achieved in several tasks.
 - Intensive email exchange between March and May
- A fine mesh preprocessor for hexagonal geometry was produced: Hexbundle
 - Working for SUBCHANFLOW and COBRA-TF.
 - Operative SUBCHANFLOW MEDCoupling interface was released on 09.03.2015, generation of MED files enabled.
 - Adaptation of the MEDCoupling interface recently achieved in COBRA-TF (June 2015).
- Conclusion and Outlook

 You can find it in the svn repository /SAT/TEST/RESSOURCES/HexBundle

- Fully operational for SUBCHANFLOW and COBRA-TF geometry tables generation.
- Inclusion of Guide tubes and instrumentation rods in SCF.
- MEDCoupling enabled in SCF and CTF.
- TO DO
 - Extension to minicores

Few input parameters:

- Number of rods in the bundle (fuel and guide tubes). (37)
- Pitch between the fuel pins. (12.81380e-3 m)
- Side length of the aristae. (47.408e-3 m)
- Rod diameter. (9.1455e-3 m)
- Guide tube diameter. (**12.663e-3 m**)
- Instrumentation rod diameter. (11.256e-3 m)

Subchannel types are predefined:

Type (tchan)	Shape	Area	Wetted Perimeter	Heated Perimeter
1 Central subchannel		pitch ² · $\sqrt{3}/4$ - 0.5·rod_area	0.5·rod_perimeter	0.5·rod_perimeter
2 Lateral subchannel		pitchb·pitch - 0.5·rod_area	0.5·rod_perimeter	0.5·rod_perimeter
3 Corner subchannel	Y	pitchb·pitch + 0.5·pitchb²·tan(30) - rod_area·(7/12)	rod_perimeter· (7/12)	rod_perimeter· (7/12)
4 Guide tube subchannel		pitch²- √3/4 – 1/3·rod_area – 1/6 guideT_area	1/3·rod_perimeter+ 1/6·guideT_perimeter	1/3·rod_perimeter
5 Instrumentation rod subchannel		pitch ² · √3/4 – 1/3·rod_area – 1/6·InstR_area	1/3·rod_perimeter+ 1/6·InstR_perimeter	1/3·rod_perimeter

The final goal was to be able to mesh the hot FA

MESH DETAILS: 331 fuel rods 660 subchannels 876 gaps

COBRA-TF deck.inp does not include unheated structures ('tube' keyword) yet, all the pins are treated with 'nucl' keyword

NURESAFE Thermal and fluid mesh visualization using SCF

COBRA-TF MED generation

- Changes in the CTF API were done.
- New method fine_triangular_mesh_external taken from SUBCHANFLOW API (June 2015).
 - All the geometrical information could not be read from the deck.inp, natural input of COBRA-TF.
 - Channels coordinates (YES)
 - Rods coordinates (NO: arrays does not exist)
 - Coordinates are read from external files as auxiliary solution.
 - mesh_parameters.txt
 - table_rods.txt
 - table_channels.txt
 - table_levels.txt
 - Those files are also generated by the hexbundle tool.

COBRA-TF MED generation Example

cd NURESAFE_TEST/RESSOURCES/HexBundle/

./compile.sh

cd VVER-1000-FA

../hexbundle! This will generate
./merge.sh! Create the deck.in
source /your/environmental/file
python run_CTF.py

You can open the CTF_FINE_MESH PARAVIEW

COBRA-TF MED generation Example

- Right now, the unheated structures are not included in the deck.inp generation process.
- To readapt other deck.inp files (such as Subchannel_CTF_input_VVER_assembly.inp):
 - Prepare an equivalent geometry within hexbundle preprocessor.
 - Replace geometry cards: 2, 3, 4 and 8 accordingly, so that
 the channel numeration match the coordinates described in
 card 2 as well as the rod-to-channel connectivities in group
 8. This is due to the different numbering convention
 between hexbundle and the externally generated files.
 - Try with the run_CTF.py script.

NURESAFE

Conclusion

- Development of a generic FORTRAN VVER FA preprocessor:
 - Suitable for COBRA-TF and SUBCHANFLOW
- Extension of the CTF.cxx API: new fine_triangular_mesh_external method taken from SCF
 - Now the Fluid mesh can be produced to be used within INTERP_2_5D in the coupling scripts.
- Extension to minicores is not foreseen before the end of the project (5 months)

NURESAFE

Outlook

FUTURE WORK

- Enabling in the COBRA-TF API the coupling through the new mesh entities.
 - Modification of getOutputMEDField to dump the code results in the new MEDCoupling object (GRS).
 - Extension of the hexbundle tool to also deal with unheated structures and generate a complete CARD 8 for COBRA-TF, new array NOSLCHC for CARD 8.5 (KIT?, INRNE?).
- Open questions in the COBRA-TF API, what to do with the thermal mesh? And with the fields associated to that mesh, such as Doppler fuel temperature?

THANKS FOR YOUR ATTENTION