

KIT contribution to UAM PHASE-I: modellig and updated results

<u>L. Mercatali¹, V. H. Sanchez¹, A. Venturini²</u>

¹ KIT – Institute for Neutron Physics and Reactor Technology ² University of Pisa (Italy)

UAM-9 Workshop, Madrid (Spain), 20-22.05.2015

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Introduction

Institute for Neutron Physics and Reactor Technology

(INR)

KIT-INR/RPD contribution to the UAM neutronics exercises:

- Monte Carlo (reference) solutions SERPENT 1.18 code
- ➤ Deterministic solutions → SCALE code (6.1 and 6.2b3)

Computational methodologies

- SERPENT code (version 1.1.18)
 - Different NDLs: JEFF3.1, JEFF3.1.1, ENDF/B-VII
 - Statistics: 5.0e+06 neutrons sources over 1000 cycles
- SCALE code (version 6.1)
 - ENDF/B-VII
 - Transport (NEWT, XSDRNPM)
 - S/U analysis via perturbation theory: TSUNAMI

 $Q = f(\sigma_1, \sigma_2, ..., \sigma_n)$ Integral parameter

$$\frac{\delta Q}{Q} = \sum_{j} S_{j} \frac{\delta \sigma_{j}}{\sigma_{j}} \implies S_{j} = \frac{\partial Q}{\partial \sigma_{j}} \cdot \frac{\sigma_{j}}{Q} \quad \frac{\text{Sensitivity}}{\text{coefficient}}$$
$$D_{\sigma} = \begin{bmatrix} d_{11} & \cdots & d_{1j} \\ \vdots & \ddots & \vdots \\ d_{1j} & \cdots & d_{jj} \end{bmatrix} \quad \frac{\text{Covariance matrix}}{\frac{1}{2}}$$

Monte-Carlo (reference) solutions

Test cases I-1		Kinf			
		JEFF3.1	JEFF 3.1.1	ENDFB-7	
WVED	HZP	1.34764 ± 0.00028	1.34937 ± 0.00026	1.34986 ± 0.00027	
VVEK	HFP	1.33152 ± 0.00028	1.33356 ± 0.00029	1.33435 ± 0.00029	
DWD	HZP	1.42785 ± 0.00027	1.42888 ± 0.00025	1.42923 ± 0.00027	
F WK	HFP	1.41136 ± 0.00026	1.41315 ± 0.00028	1.41401 ± 0.00026	
DWD	HZP	1.34541 ± 0.00027	1.34673 ± 0.00025	1.34691 ± 0.00026	
D VV K	HFP	1.23046 ± 0.00032	1.23080 ± 0.00032	1.23295 ± 0.00032	
VDIT7 3.1	Cold	1.23762 ± 0.00028	1.23846 ± 0.00027	1.23984 ± 0.00027	
KKI1Z-2;1	Hot	1.22632 ± 0.00028	1.22864 ± 0.00026	1.22863 ± 0.00027	
GEN-III	HFP	1.01485 ± 0.00039	1.01602 ± 0.00039	1.01805 ± 0.00037	
	That areas I O				
Test ca	ises I-7		Kinf		
Test ca	uses I-2	JEFF3.1	Kinf JEFF 3.1.1	ENDFB-7	
Test ca	uses I-2 HZP	JEFF3.1 1.41569 ± 0.00019	Kinf JEFF 3.1.1 1.41733 ± 0.00019	ENDFB-7 1.41839 ± 0.00019	
Test ca PWR	nses I-2 HZP HFP	JEFF3.1 1.41569 ± 0.00019 1.40616 ± 0.00020	Kinf JEFF 3.1.1 1.41733 ± 0.00019 1.40765 ± 0.00019	ENDFB-7 1.41839 ± 0.00019 1.40852 ± 0.00018	
Test ca PWR PWR	nses I-2 HZP HFP HZP	JEFF3.1 1.41569 ± 0.00019 1.40616 ± 0.00020 1.11771 ± 0.00025	Kinf JEFF 3.1.1 1.41733 ± 0.00019 1.40765 ± 0.00019 1.11830 ± 0.00025	ENDFB-7 1.41839 ± 0.00019 1.40852 ± 0.00018 1.11913 ± 0.00025	
Test ca PWR BWR	HZP HFP HZP HFP HFP	JEFF3.1 1.41569 ± 0.00019 1.40616 ± 0.00020 1.11771 ± 0.00025 1.07503 ± 0.00028	KinfJEFF 3.1.11.41733 ± 0.000191.40765 ± 0.000191.11830 ± 0.000251.07663 ± 0.00029	ENDFB-7 1.41839 ± 0.00019 1.40852 ± 0.00018 1.11913 ± 0.00025 1.07739 ± 0.00027	
Test ca PWR BWR GEN-III type	nses I-2 HZP HFP HZP HFP 1 (UOX 2.1%)	JEFF3.1 1.41569 ± 0.00019 1.40616 ± 0.00020 1.11771 ± 0.00025 1.07503 ± 0.00028 1.04854 ± 0.00022	KinfJEFF 3.1.11.41733 ± 0.000191.40765 ± 0.000191.11830 ± 0.000251.07663 ± 0.000291.05043 ± 0.00021	ENDFB-7 1.41839 ± 0.00019 1.40852 ± 0.00018 1.11913 ± 0.00025 1.07739 ± 0.00027 1.05159 ± 0.00022	
Test ca PWR BWR GEN-III type GEN-III type	HZP HFP HZP HFP 1 (UOX 2.1%) 1 (UOX 4.2%)	JEFF3.1 1.41569 ± 0.00019 1.40616 ± 0.00020 1.11771 ± 0.00025 1.07503 ± 0.00028 1.04854 ± 0.00022 1.25708 ± 0.00019	KinfJEFF 3.1.11.41733 ± 0.000191.40765 ± 0.000191.11830 ± 0.000251.07663 ± 0.000291.05043 ± 0.000211.25951 ± 0.00019	ENDFB-7 1.41839 ± 0.00019 1.40852 ± 0.00018 1.11913 ± 0.00025 1.07739 ± 0.00027 1.05159 ± 0.00022 1.25997 ± 0.00020	
Test ca PWR BWR GEN-III type GEN-III type GEN-III	nses I-2 HZP HFP HZP HFP 1 (UOX 2.1%) 1 (UOX 4.2%) I type 2	JEFF3.1 1.41569 ± 0.00019 1.40616 ± 0.00020 1.11771 ± 0.00025 1.07503 ± 0.00028 1.04854 ± 0.00022 1.25708 ± 0.00019 1.12760 ± 0.00027	KinfJEFF 3.1.1 1.41733 ± 0.00019 1.40765 ± 0.00019 1.11830 ± 0.00025 1.07663 ± 0.00029 1.05043 ± 0.00021 1.25951 ± 0.00019 1.12937 ± 0.00026	ENDFB-7 1.41839 ± 0.00019 1.40852 ± 0.00018 1.11913 ± 0.00025 1.07739 ± 0.00027 1.05159 ± 0.00022 1.25997 ± 0.00020 1.13048 ± 0.00026	
Test ca PWR BWR GEN-III type GEN-III type GEN-III GEN-II	HZP HFP HZP HFP 1 (UOX 2.1%) 1 (UOX 4.2%) 1 type 2 I type 3	JEFF3.1 1.41569 ± 0.00019 1.40616 ± 0.00020 1.11771 ± 0.00025 1.07503 ± 0.00028 1.04854 ± 0.00022 1.25708 ± 0.00019 1.12760 ± 0.00027 1.05005 ± 0.00030	KinfJEFF 3.1.1 1.41733 ± 0.00019 1.40765 ± 0.00019 1.11830 ± 0.00025 1.07663 ± 0.00029 1.05043 ± 0.00021 1.25951 ± 0.00019 1.12937 ± 0.00026 1.05148 ± 0.00029	ENDFB-7 1.41839 \pm 0.00019 1.40852 \pm 0.00018 1.11913 \pm 0.00025 1.07739 \pm 0.00027 1.05159 \pm 0.00022 1.25997 \pm 0.00020 1.13048 \pm 0.00026 1.13048 \pm 0.00026	

<u>Good agreement</u> within different data libraires and with previous MCNP (PSU) results

Computational method: TSUNAMI-1d flow diagram

5 Luigi Mercatali – UAM9 Workshop, Madrid, 20-22.05.2015

Exercises I-1: Cell Physics

Focuses on the derivation of the multi-group microscopic cross section libraries (in the way used as inputs by the lattice physics codes) and their uncertainties

Test cases:

- PB-2 (BWR)
- TMI1 (PWR)
- GEN-III (MOX fuel)
- KRITZ 21, KRITZ 213, KRITZ 219
- VVER (KOZLODUY-6)

Luigi Mercatali - UAM9 Workshop, Madrid, 20-22.05.2015

SCALE vs. SERPENT

Micro-XS	SCALE 6.1 [barns]	SERPENT [barns]	Uncertainty (%)	Unit cell
U-235 abs.	41.48	40.41 ± 0.0086	1.22	
U-238 abs.	0.88	0.80 ± 0.0011	0.97	
U-235 fission	33.43	32.56 ± 0.00069	1.22	DVVR
U-238 fission	0.086	0.089 ± 0.00097	4.79	
U-235 abs.	42.95	42.18 ± 0.00088	1.09	
U-238 abs.	0.96	0.93 ± 0.0011	0.97	
U-235 fission	34.72	34.10 ± 0.00064	1.11	
U-238 fission	0.099	0.10 ± 0.00096	3.94	
U-235 abs.	58.13	57.26 ± 0.00085	1.03	
U-238 abs.	1.042	1.005 ± 0.0012	0.99	
U-235 fission	47.84	47.76 ± 0.00063	1.05	
U-238 fission	0.093	0.095 ± 0.00100	3.88	

Uncertainties on micro-XSs higher by an order of magnitude with respect to those on Keff

Exercises I-2: Lattice Physics

Multigroup cross-section uncertainties from Exercise I-1 are propagated through lattice physics calculations to 2 groups (Ecutoff = 0.625 eV) microscopic uncertainties

Exercises I-2: results

Test Case		k-eff	Uncertainty
D\WD	HZP	1.11029	5.00E-01
DWK	HFP	1.07736	5.56E-01
D\A/D	HZP	1.41009	4.64E-01
PWR	HFP	1.39351	4.71E-01
GEN-III (1)	HFP	1.25325	4.87E-01
GEN-III (2)	HFP	1.12304	4.94E-01
GEN-III (3)	HFP	1.04501	5.03E-01
GEN-III (4)	HFP	1.07008	9.68E-01

Keff Sensitivities			Keff Uncertainties		
XS	BWR	PWR	XS	BWR	PWR
U-235 nubar	9.19E-1	9.45E-1	U-238 (n,ɣ)	3.20E-1	2.56E-1
U-235 fission	4.15E-1	2.73E-1	U-235 nubar	2.65E-1	2.68E-1
U-235 total	3.08E-1	1.25E-1	U-238 (n,n')	2.06E-1	9.72E-2
H-1 elastic	1.66E-1	1.66E-1	U-235 chi	1.47E-1	8.79E-2
H-1 scatter	1.65E-1	1.66E-1	U-235 (n,ɣ)	1.44E-1	2.00E-1

10 Luigi Mercatali – UAM9 Workshop, Madrid, 20-22.05.2015

Exercises I-2: homogenized XS uncertainties

Cross-section Energy group				Value (cm ⁻	¹) (Uncertainty %)		
01055-5001011	Energy group	PWR	BWR	GEN-III Type 1	GEN-III Type 2	GEN-III Type 3	GEN-III Type 4
	1	1.44E + 00	1.58E + 00	1.31E + 00	1.32E + 00	1.33E + 00	1.50E + 00
Total	1	(1.38E - 01)	(1.29E - 01)	(1.41E - 01)	(1.39E - 01)	(1.39E - 01)	(1.39E - 01)
10141	\bigcirc	5.69E - 01	5.79E - 01	5.33E - 01	5.34E - 01	5.34E - 01	5.24E - 01
		(8.78E - 01)	(8.40E - 01)	(9.04E - 01)	(9.03E - 01)	(9.01E - 01)	(9.73E - 01)
	1	1.11E-01	5.72E - 02	1.07E - 01	1.17E - 01	3.45E - 1	1.24E - 01
Absorption	1	(8.77E - 01)	(6.06E - 01)	(7.00E - 01)	(5.61E - 01)	(9.79E - 01)	(5.11E - 01)
Mosorption	(2)	1.06E - 02	7.32E - 03	1.04E - 02	1.06E - 02	5.09E - 01	1.07E - 02
		(1.33E + 00)	(1.38E + 00)	(1.35E + 00)	(1.34E + 00)	(1.47E + 00)	(1.34E + 00)
	1	7.95E - 01	2.94E - 02	6.86E - 02	6.60E - 02	1.90E - 01	6.42E - 02
Fission	1	(3.17E - 03)	(3.23E - 01)	(3.23E - 01)	(3.24E - 01)	(6.26E - 01)	(3.24E - 01)
1 1551011	(2)	3.59E - 03	1.95E - 03	3.17E - 03	3.10E - 03	4.97E - 01	3.05E - 03
		(3.55E - 01)	(6.81E - 01)	(3.71E - 01)	(3.75E - 01)	(4.45E - 01)	(3.80E - 01)
	1	1.94E - 01	7.02E - 02	1.67E - 1	1.61E - 01	5.45E - 01	1.56E - 01
Nufission	1	(4.44E - 01)	(4.49E - 01)	(4.48E - 01)	(4.49E - 01)	(1.09E + 00)	(4.49E - 01)
1 (411001011	()	9.08E - 03	4.69E - 03	8.02E - 03	7.86E - 03	1.44E - 02	7.73E - 3
		(5.12E - 01)	(1.01E + 00)	(5.71E - 01)	(5.82E - 01)	(7.75E - 01)	(5.92E - 01)

The GRS Method (1)

- The Wilk's formula is used to determine the number of calculations required to obtain the uncertainty bands.
- The number of code runs is independent of the number of selected input uncertainty parameters

$$1 - \alpha^n \ge \beta$$
 (One sided)

$$1 - \alpha^n - n \cdot (1 - \alpha) \cdot \alpha^{n-1} \ge \beta$$
 (Two sided)

 α = probability content

- β = confidence level that the
- maximum obtained code result will
- not be exceeded with a probability $\boldsymbol{\alpha}$
- n = number of code runs

	One-sided statistical limits			Two-sided statistical limits		
β/α	0.90	0.95	0.99	0.90	0.95	0.99
0.90	22	45	230	38	77	388
0.95	29	59	299	46	93	473
0.99	44	90	459	64	130	662

The GRS method (2)

- Uncertainty in input values described by PDFs
- The model output is a random variable whose distribution reflects the uncertainty in the output associated with the uncertainty in the input
- The objective of the uncertainty analysis is to obtain information about the probability distribution of the output
- One would like to know exactly the probability distribution of the output in order to answer as precise as possible all questions about the likelihood of its values
- Unfortunately the distribution cannot be derived analytically and the assumption of normal distribution is made
- Statististics offers the means to "quantify" the goodness of our output values (Chi-Square normality test, etc.)

SCALE/Sampler at KIT

- Extensive assessment of SCALE/Sampler at KIT in 2014
- Sampler is a SCALE "super-sequence"
- Sampling results for following types of responses
 - K eingenvalue (XSDRN, NEWT, KENO)
 - Microscopic reaction rates by nuclide (Newt/Opus)
 - Homogenized/collapsed macro cross sections (Newt)
 - Nuclide concentrations, activities (ORIGEN)
 - Decay heat, radiotoxicity, photon sources (ORIGEN)
 - Schield responses: doses, radiation damage, etc. (Maveric)
- Each response at every time-step includes:
 - Frequency distributions as histogram plot file
 - Mean values and standard deviations in CSV file
 - Results of chi-squared normality test for each response
 - Covariance and correlation coefficients between responses

LWRs-pin cells: sampling approach vs. perturbation theory

	TSUN	IAMI	SAMPLER (N=93)		
HZP	k	% δk/k	k	% δk/k	
BWR (HFP)	1.22270	6.16E-01	1.22533	6.23E-01	
BWR (HZP)	1.34050	5.23E-01	1.34249	5.18E-01	
PWR (HZP)	1.42290	4.89E-01	1.40670	4.88E-01	
PWR (HFP)	1.40424	4.82E0-1	1.42635	4.79E-01	
VVER (HFP)	1.32725	5.20E-01	1.32993	5.12E-01	
VVER (HZP)	1.34498	5.13E-01	1.34879	5.04E-01	
VVER - 1000	0.36112	1.24E+00		1.36E+00	

Luigi Mercatali – UAM9 Workshop, Madrid, 20-22.05.2015 15

Institute for Neutron Physics and Reactor Technology (INR)

VVER Fuel Assembly (Kozloduy - 6)

Test cases	TSUNAMI	Uncertainty [%]	SAMPLER	Uncertainty [%]
VVER-1000				
HZP _{rodded}	0.94730	5.08E-01	0.94591	5.04E-01
HFP rodded	0.93199	5.12E-01	0.93328	5.12E-01
$\mathrm{HZP}_{\mathrm{unrodded}}$	1.33818	5.03E-01	1.34050	4.83E-01
$\mathrm{HFP}_{\mathrm{unrodded}}$	1.32299	5.15E-01	1.32741	4.88E-01

Reaction	Energy gr.	TSUNAMI [cm ⁻¹]	SAMPLER [cm ⁻¹]
Tetal	1	5.51E-01 (-)	5.50E-01 (8.95E-01)
Total	2	1.37E+00 (-)	1.37E + 00 (1.50E - 01)
Fission	1	2.41E-03 (5.07E-01)	2.43E-03 (5.50E-01)
Fission	2	5.61E-02 (3.28E-01)	5.70E-02 (3.37E-01)
A.1	1	1.41E-02 (1.34E+00)	1.41E-02 (9.08E-01)
Absorption	2	9.48E-02 (8.81E-01)	9.65E-02 (1.99E-01)
Conttoning	1	5.37E-01 (8.43E-01)	5.36E-01 (8.99E-01)
Scattering	2	1.27E+00 (1.59E-01)	1.27E + 00 (1.61E - 01)
Nufacion	1	6.16E-03 (-)	6.22E-03 (8.42E-01)
IN ULISSIOII	2	1.37E-01 (-)	1.39E-01 (4.54E-01)

Good agreement between the two approaches

Summary

- The complete set of updated results for Exercises I-1 and I-2 has been provided to the benchmark team according to the new template specifications
- Uncertainties in the order of ~0.5% (k_{eff}) and ~4% (XSs)
- U-238 (n,y) and Pu-239 nubar major contributors to the uncertainties for UOX and MOX LWR's test cases
- Good agreement with the Monte-Carlo solutions, especially for microscopic XSs
- Perturbation theory approach and the statistical sampling methodology provide consistent results
- Work in progress:
 - Validation of the statistical sampling methodology (SCALE 6.2b4)
 - Exercise I-3 test cases
 - Pin-cell burn-up test case I-1

