

C19- Use and applications of COBRA-TF at KIT

J. Jiménez and V. Sanchez

www.kit.edu

Content

- Assessment of the COBRA-TF CASL source code at KIT
 - Third internal reports submitted to the maintenance team
 - Fixes done in the source code of the version received on April 2014 (28.5.2014)
- Application of COBRA-TF to two big cases
 - UO2/MOX core HFP
 - UO2/MOX core HP
- Preprocessor for Hexagonal geometry
- Conclusions

Assessment of the source code at KIT (before 1st CTF User group Meeting)

Two reports submitted to the maintenance team. Effective communication via email exchange.

- The restart capabilities of the CTF version doesn't properly
 - The new modules have not been included in dumpit.f and restart.f. (rks171)
 - Modules parallel, solid_material_props, transfer_io, vtk, powermod
- When reading the restart, variables are not allocated and code crashes

Assessment of the source code at KIT (after 1st CTF User group Meeting)

Another report submitted to the maintenance team at the end of May 2014.

- Extension of printing formats in the preprocessor for very big cases, see next.
- Portability with Intel Fortran was improved.

Application to big cases, verification cases.

- Results for exercise 2 of the OECD/US-NRC MOX Core Transient Benchmark produced with COBAYA3/COBRA-TF using domain decomposition (2010).
- Converged SS 3D power distribution has been extracted.

CASL COBRA-TF applied to the HFP 3D ARO

- COBRA-TF standalone execution in serial mode took 15h 24m.
- Input deck has 884k lines, 56288 channels, 55777 rods.
- 3D power distribution per fuel pin from CBY3-CTF.
- Post-processing of VTK files with PARAVIEW.
- Memory consumption and speed have been very much optimized with the code refactoring.

CASL COBRA-TF applied to the HP 3D ARI-1

- The input deck has the same number of lines.
- Post-processing of VTK files with PARAVIEW.
- Those cases were run just to verify the new COBRA-TF capabilities.
- Added to the validation data base.
- COBRA-TF has now the option for doing a steady state looking for convergence.

CASL COBRA-TF portability check at KIT

Last version received on 4 May 2015. Compiled in Mageia 4, 64 bits.

Results of the test with gcc 4.8.2 and cmake 2.8.12.1:

30% tests passed, 185 tests failed out of 263

Results of the test with ifort 15.0.0:

29% tests passed, 187 tests failed out of 263

In most of the cases the code runs properly and the output is almost identically except few values in the last decimal:

Suggestion to improve the tolerance of differences in utils/test_res.py
The maximum allowable relative error between a parameter and its gold value
max_rel_err = 0.001

The maximum allowable absolute error between a parameter and its gold value max_abs_err = 0.1e-6 INCREASE THIS VALUE!!

Could be due to wrong settings, no HDF5 support, ...

Hexagonal fine-mesh preprocessor

- Developed within NURESAFE WP1.4 framework.
- Fully operational for SUBCHANFLOW and COBRA-TF geometry tables generation.
- Coded in FORTRAN.
- Few input parameters:

Number of rods in the bundle (fuel and guide tubes). (37) Pitch between the fuel pins. (12.81380e-3 m) Side length of the aristae. (47.408e-3 m) Rod diameter. (9.1455e-3 m) Guide tube diameter. (12.663e-3 m) Instrumentation rod diameter. (11.256e-3 m)

Any number of rods can be modelled.

Hexagonal fine-mesh preprocessor (2)

Type (tchan)	Shape	Area	Wetted Perimeter	Heated Perimeter
1 Central subchannel	X	pitch ² · $\sqrt{3}/4$ - 0.5·rod_area	0.5·rod_perimeter	0.5·rod_perimeter
2 Lateral subchannel		pitchb·pitch - 0.5·rod_area	0.5.rod_perimeter	0.5·rod_perimeter
3 Corner subchannel	V	pitchb·pitch + 0.5·pitchb ² ·tan(30) - rod_area·(7/12)	rod_perimeter· (7/12)	rod_perimeter· (7/12)
4 Guide tube subchannel	×××	pitch²· √3/4 – 1/3·rod_area – 1/6 guideT_area	1/3·rod_perimeter+ 1/6·guideT_perimeter	1/3·rod_perimeter
5 Instrumentation rod subchannel	×××	pitch²· √3/4 – 1/3·rod_area – 1/6·InstR_area	1/3·rod_perimeter+ 1/6·InstR_perimeter	1/3·rod_perimeter

Hexagonal fine-mesh preprocessor (3)

It is possible to mesh a single FA (minicores are subjected to future work)

MESH DETAILS:

331 fuel rods660 subchannels990 gaps

Hexagonal fine-mesh preprocessor (4)

- Within NURESAFE project, the preprocessor has been used to generate the geometry tables (channels and rods) of COBRA-TF (GRS) and SUBCHANFLOW (KIT).
- Some input decks (37 pins and 331 pins) have been generated.
- Using SUBCHANFLOW SALOME component, the MEDCoupling interface was extended for allowing:
 - Coupled NK-TH analysis.
 - Post-processing via PARAVIS. See next slide.

Thermal and fluid mesh visualization using SCF Mod_temp ___5.952e+02 z x -570 -5.679e+02 SHOW VIDEO

2nd CTF User group Meeting, May 20-21, 2015, UPM, Spain 13

Institut für Neutronenphysik und Reaktortechnik

Conclusions

- Assessment of the COBRA-TF CASL source code at KIT was conducted.
- Two big cases added to the validation matrix.
- Development of a generic VVER FA preprocessor:
 - Suitable for COBRA-TF and SUBCHANFLOW
- The geometry information is also used within the code components under the SALOME platform (NURESAFE EU project).

Acknowledgements

- This work has been performed at the Institute for Neutron Physics and Reactor Technology (INR) of the Karlsruhe Institute of Technology (KIT).
- We would like to acknowledge the European Commission for the financial support within the Euratom FP7 for Nuclear Research and Training Activities (2007–2011) under the contract NURESAFE-323263