MPAS Extreme Scaling Experiment

Towards convection-resolving, global climate simulations

¹ KARLSRUHE INSTITUTE OF TECHNOLOGY, INSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH ² NATIONAL CENTER FOR ATMOSPHERIC RESEARCH, MESOSCALE AND MICROSCALE METEOROLOGY LABORATORY ² AUGSBURG UNIVERSITY, DEPARTMENT OF GEOGRAPHY, CHAIR OF REGIONAL CLIMATE AND HYDROLOGY

16th Annual WRF Users' Workshop, 17/06/2015

Dominikus Heinzeller¹, Michael Duda² and Harald Kunstmann^{1,3}

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

MPAS variable-resolution mesh with 535554 cells

Research question: teleconnection between African monsoon systems and Atlantic/Indian ocean

MPAS variable-resolution mesh with 535554 cells

Research question: teleconnection between African monsoon systems and Atlantic/Indian ocean

Variable-resolution mesh with 535554 grid cells

West African Monsoon in MPAS, WRF, CCLM

Total monthly precipitation [mm] - July 1982 (initialisation: CCLM/WRF 1979-01-01, MPAS 1981-09-01)

4

West African Monsoon in MPAS, WRF, CCLM

Total monthly precipitation [mm] - July 1982

(initialisation: CCLM/WRF 1979-01-01, MPAS 1981-09-01)

West African Monsoon in MPAS, WRF, CCLM

Total monthly precipitation [mm] - July 1982 (initialisation: CCLM/WRF 1979-01-01, MPAS 1981-09-01) 25°N 25°N 20°N 20°N 15°N CCLM/WRF from the WASCAL 15°N 10°N 10°N regional climate simulations for West Africa using an optimised setup for the 5°N 5°N 0° region (see poster 63). CRU 5°S MPAS runs using an out-of-the box 20°W 10°W 0° 25°N setup (with WRF too wet over WA): 20°N 20°N WSM6 - KF - YSU - RRTMG 15°N 15°N 10°N 10°N 5°N 5°N 0° 0° 0° MPAS 60-12km WRF 12km MPAS 120km 5°S 5°S 5°S 20°W 10°W 0° 10°E 20°E 20°W 10°W 0° 10°E 20°E 20°W 10°W 0° 10°E 20°E 0 100 200 300 400 500 600 700 800 900 1000

MPAS Extreme Scaling Experiment as part of the 3rd Juqueen Porting & Tuning Workshop

Extreme scaling on Juqueen: Pandora's box

regular 3km mesh x1.65536002 ncell = 65536002, nvert = 41

expect \geq 70% parallel efficiency up to 400000 threads (150 cells per task)

double precision, physics+dynamics:

11.5TB of memory required for 3km mesh, memory requirement 0.175MB per cell minimum number of nodes is approx. 750

I/O sizes: initial condition 1.1TB, restart 2.1TB, diagnostics 15GB, history 250GB

Extreme scaling on Juqueen: Pandora's box

regular 3km mesh x1.65536002 ncell = 65536002, nvert = 41	expect ≥70% parallel efficiency up to 400000 threads (150 cells per task)	
double precision, physics+dynamics: memory requirement 0.175MB per cell	11.5TB of memory required for 3km mesh, minimum number of nodes is approx. 750	
I/O sizes: initial condition 1.1TB, restart 2.1TB, diagnostics 15GB, history 250GB		

Pitfalls:

Test runs on 1 and 2 racks (1024, 2048 nodes) failed - memory errors. Defragmentation issue?

Model initialisation took way to long (1hr+), tuning of I/O and other parameters required

A moment of excitement (for geeks)

Extreme scaling results

Key facts

- 1hr integration, cold start (init.nc)
- 12s integration time step (Δx*4) to avoid NaNs
- no output except one diagnostic file (15Gb)
- 1 I/O task per 128 tasks, i.e., 128 per rack
- hash table size increased from 27183 to 6 Mio

Extreme scaling results

BG size (# nodes)	Parallel efficiency integration only	Integration in 24h walltime (no output)	Estimated integration in 24h walltime (with output)
4096	100.0%	48h	29h
8192	91.2%	87h	53h
16384	90.1%	172h	104h
24576	87.7%	250h	152h
28672	69.5%	231h	141h
BG size (# nodes)	Number of tasks	CPUh per 24h model run time (with output)	Speedup wrt. real time (with output to disk)
BG size (# nodes) 4096	Number of tasks 65536	CPUh per 24h model run time (with output) 1.30 Mio	Speedup wrt. real time (with output to disk) 1.21
BG size (# nodes) 4096 8192	Number of tasks 65536 131072	CPUh per 24h model run time (with output) 1.30 Mio 1.42 Mio	Speedup wrt. real time (with output to disk) 1.21 2.21
BG size (# nodes) 4096 8192 16384	Number of tasks 65536 131072 262144	CPUh per 24h model run time (with output) 1.30 Mio 1.42 Mio 1.45 Mio	Speedup wrt. real time (with output to disk) 1.21 2.21 4.33
BG size (# nodes) 4096 8192 16384 24576	Number of tasks 65536 131072 262144 393216	CPUh per 24h model run time (with output) 1.30 Mio 1.42 Mio 1.45 Mio 1.49 Mio	Speedup wrt. real time (with output to disk) 1.21 2.21 4.33 6.33

Take home messages

MPAS can reproduce the dynamics of the West African Summer Monsoon using an out-of-the box setup and is a promising tool for climate modelling.

Global, convection-resolving atmospheric simulations with MPAS are within reach of current/next generation HPC facilities. Open problems are model initialisation, disk I/O and post-processing of the data.

Take home messages

MPAS can reproduce the dynamics of the West African Summer Monsoon using an out-of-the box setup and is a promising tool for climate modelling.

Global, convection-resolving atmospheric simulations with MPAS are within reach of current/next generation HPC facilities. Open problems are model initialisation, disk I/O and post-processing of the data.

Model developers/users have to tailor and optimise models to run on modern massively parallel systems, which requires in-depth knowledge and time.

Bonus material

How to include new land surface and soil data or dynamic changes thereof in a consistent way?

GCM standard, Volta region (West Africa)

How to include new land surface and soil data or dynamic changes thereof in a consistent way?

GCM standard, Volta region (West Africa) RCM standard land cover (MODIS)

How to include new land surface and soil data or dynamic changes thereof in a consistent way?

GCM standard, Volta region (West Africa)

RCM standard land cover (MODIS)

RCM high-resolution land cover (DLR: MODIS, ASAR, TanDEM-X)

How to include new land surface and soil data or dynamic changes thereof in a consistent way?

GCM standard, Volta region (West Africa)

RCM standard land cover (MODIS)

RCM high-resolution land cover (DLR: MODIS, ASAR, TanDEM-X)

Consistency? Feedback processes?

Dynamic changes of land use?

CMIP5 vs CORDEX issue: land use classification and land use change in ESMs not reflected in RCMs

MPAS, WRF, CCLM vs. observations - any good?

Near surface temperature [°C] - July 1982 monthly mean

(initialisation: WRF 1979-01-01, MPAS 1981-09-01)

At least one monsoon period needed for spinup

Soil temperature [°C] (top) and relative soil moisture [%] (bottom) - July 1982 mean

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

At least one monsoon period needed for spinup

Mean sea level pressure [hPa] - July 1982 monthly mean

Take home messages

MPAS can reproduce the dynamics of the West African Summer Monsoon using an out-of-the box setup and is a promising tool for climate modelling.

Global, convection-resolving atmospheric simulations with MPAS are within reach of current/next generation HPC facilities. Open problems are model initialisation, disk I/O and post-processing of the data.

Take home messages

MPAS can reproduce the dynamics of the West African Summer Monsoon using an out-of-the box setup and is a promising tool for climate modelling.

Global, convection-resolving atmospheric simulations with MPAS are within reach of current/next generation HPC facilities. Open problems are model initialisation, disk I/O and post-processing of the data.

Model developers/users have to tailor and optimise models to run on modern massively parallel systems, which requires in-depth knowledge and time.

