

U redox state and speciation of U in contact with magnetite nanoparticles: high-resolution XANES, EXAFS, XPS and TEM study

Ivan Pidchenko

Institute for Nuclear Disposal (INE), KARLSRUHE INSTITUTE FOR TECHNOLOGY (KIT)

Advanced synchrotron-based systematic investigations of actinide (An) and lanthanide (Ln) systems to understand and predict their reactivity

Helmholtz-Young Investigators Group VH-NG-734 Institute for Nuclear Waste Disposal (KIT)

MOTIVATION

Anaerobic corrosion >1000 years

Fe canister Corrosion Studies (INE)

U⁶⁺ co-precipitation with magnetite

- **U** INCORPORATION INTO MAGNETITE ?
- \Box is U⁵⁺ possible / stable ?
- □ WHAT IS U⁶⁺ REDOX KINETICS DURING MAGNETITE FORMATION ?
 - FeCl₂ / FeCl₃ (1:2)
 NaOH (1 hour titration)
 1 wt % NaCl (final)
 U 1000-10000 ppm
 4 samples

U⁶⁺ co-precipitation with magnetite

U M₄ HR-XANES / U L₃ EXAFS

Kvashnina et al., PRL, 2013

U M₄ HR-XANES / 15 days

Kvashnina et al., PRL, 2013

ESRF

<u>U M₄ HR-XANES / 15 days</u>

<u>U L₃ XAFS/ ~200 days</u>

<u>U L₃ XAFS/ ~200 days</u>

<u>U L₃ XAFS/ ~200 days</u>

Ilton et al, EnvSci Tech 2010

11 27.08.2015 Karlsruhe, XAFS16, I. Pidchenko

<u>U M₄ HR-XANES / ~150 days on air</u>

<u>U L₃ XAFS/ ~250 days on air</u>

CONCLUSIONS

- HR-XANES is an emerging tool for speciation studies of An with concentrations relevant to HLW repository
- The HR-XANES allows to resolve several U oxidation states in mixtures
- □ U⁶⁺ kinetics can be studied provided that the experimental conditions are the same
- Pentavalent U is stable on to air when incorporated into the structure of magnetite

Readopted from W. Runde LA Science

ACKNOWLEDGEMENTS

Dieter Schild Tadahiro Yokosawa David Fellhauer Nicolas Finck Xavier Gaona Vanessa Montoya Frank Heberling **Thorsten Schäfer** Elke Bohnert Volker Metz Tim Prüβmann **Patric Lindqvist** Tonya Vitova Jörg Rothe Kathy Dardenne...

Radiation protection team

Jörg Göttlicher Ralph Steininger

Kristina Kvashnina André Rossberg

Yulia Podkovyrina

THANK YOU !

HYIG grant VH-NG-734

Supporting information

<u>U L₃ HR-XANES / 15 days</u>

<u>U L₃ XANES / 200 days + oxidized</u>

EXAFS fit results for 1000-10000 XAFS									
sample	Scater Path	N	R (Å)	DW (Ų)	ΔE ₀ (eV)	S ₀ ² (aver. from 4 UO2 fits)	r, (chi²)	Karlsruhe Institute of Technology	
1000	U-O3 U-O1 U-O2 U-Fe _{oct} U-Fe _{tet} U-U1	$0.2 \pm 0.1 \\ 3.0 \pm 0.3 \\ 1.7 \pm 0.1 \\ 7.0 \pm 1.8 \\ 0.6 \pm 0.3 \\ 2.9 \pm 0.7$	1.73 (3) 2.17 (1) 2.38 (2) 3.18 (2) 3.55 (3) 3.85 (2)	0.006 (1) 0.006 (1) 0.020 (2) 0.001 (1) 0.002 (1)	6.6 (5)	0.77	0.008		
1000 on air	U-O3 U-O1 U-O2 U-Fe _{oct}	0.8 ± 0.2 3.5 ± 0.2 0.8 ± 0.1 5.0 ± 0.6	1.79 (2) 2.13 (1) 2.41 (1) 3.19 (1)	0.004 (1) 0.004 (1) 0.004 (1) 0.016 (2)	5.0 (8)	0.77	0.008		
3000	U-O3 U-O1 U-O2 U-Fe _{oct} U-Fe _{tet} U-U1	$0.3 \pm 0.2 \\ 2.8 \pm 0.3 \\ 2.4 \pm 0.2 \\ 1.9 \pm 0.4 \\ 0.6 \pm 0.3 \\ 3.2 \pm 0.7$	1.70 (1) 2.22 (1) 2.43 (1) 3.11 (1) 3.34 (2) 3.84 (3)	0.006 (1) 0.006 (1) 0.006 (1) 0.006 (1) 0.006 (4) 0.002 (1)	7.4 (3)	0.77	0.003		
6000	U-O3 U-O1 U-O2 U-Fe _{oct} U-Fe _{tet} U-U1	$0.4 \pm 0.2 \\ 2.7 \pm 0.3 \\ 2.1 \pm 0.2 \\ 4.8 \pm 1.6 \\ 0.6 \pm 0.3 \\ 3.4 \pm 0.7$	1.69 (2) 2.25 (1) 2.43 (1) 3.14 (2) 3.50 (2) 3.83 (3)	0.006 (1) 0.006 (1) 0.006 (1) 0.023 (2) 0.005 (3) 0.002 (1)	7.0 (4)	0.77	0.003		
10000	U-O3 U-O1 U-O2 U-Fe _{oct} U-Fe _{tet} U-U1	$0.4 \pm 0.2 \\ 2.9 \pm 0.2 \\ 2.1 \pm 0.2 \\ 1.2 \pm 0.4 \\ 0.6 \pm 0.2 \\ 5.2 \pm 0.8$	1.68 (2) 2.29 (1) 2.44 (1) 3.14 (2) 3.50 (2) 3.83 (3)	0.006 (1) 0.006 (1) 0.006 (1) 0.013 (4) 0.004 (3) 0.006 (1)	7.3 (3)	0.77	0.003		

