

3D Ultrasound Computer Tomography (USCT)

Nicole V. Ruiter, Michael Zapf, Torsten Hopp and Hartmut Gemmeke

INSTITUTE FOR DATA PROCESSING AND ELECTRONICS

Breast cancer

- Most common cancer of women in western world (every 10th woman)
- Challenge: Early diagnosis

New cancer cases 2006 (women, Germany)

Source: Robert Koch Institute, Sant et al

Current diagnosis methods

Screening Symptomatic patients

Ultrasound Computer Tomography (USCT)

Basic idea: Surround object with (unfocused) ultrasound transducers in a fixed setup

Breast imaging in fixed setup

- Features:
 - Reproducible 3D images with ultrasound
 - Sub-millimeter volumes
 - Multiple tissue information

Example setup

The beginning

First attenuation imaging (Dussik, 1946): Not so successful imaging of brain ventricles

First "USCT" device (Holmes et al., 1954): Slice image of the neck, compounding device

State of the art

18.09.2015

3D USCT at KIT

 Basic idea: Surround object with (unfocused) ultrasound transducers in a fixed setup

Breast imaging in fixed setup

Features:

- Reproducible 3D images with ultrasound
- Sub-millimeter volumes
- Multiple tissue information
- Optimally focused images in 3D (isotropic PSF)
- Fast data acquisition

3D Ultrasound Computer Tomography for early breast cancer diagnosis ...

- as harmless as diagnostic ultrasound
- as economical as X-ray mammography
- as sensitive as MRI

3D USCT imaging setup

How does it work? Data acquisition

- >10 Mio. A-scans
- Up to 40 GB raw data per breast
- Measurement time 10 s to 4 min.

Image reconstruction

- Sound speed
- Attenuation
- Reflection

Image one, get two free

Images three modalities concurrently:

- Reflection: High quality "B-Scans" Structural information
- Speed of sound and attenuation: Quantitative information Simple tissue classification possible?

Source: Simplified from Greenleaf et al.

Image reconstruction

First clinical study: Patient population

- Title: "Pilotstudie 3D-Ultraschall-Computertomographie für die Brustkrebsdiagnose"
- University Hospital Jena (Prof. W.A. Kaiser)
- 10 patients, all with suspicious lesions (follow ups, transferals, BRCA patients)
- 2 implants, 4 cancers, papilloma, fibroadenoma, mastopathy, cysts
- Patients' average age: 55.6 a (± 13.5 a)
- 4 B-cups, 4 C-cups, 2 D-cups

Patient 1: Comparability

Patient 2: Inflammatory carcinoma

Patient 3: Multicenter carcinoma

18.09.2015

Second Study: University Hospital Mannheim

- Aims
 - Gives USCT as comparable diagnoses as MRI?
 - Analyze different lesion types
- 200 patients
- Start of study: September 2015

Build the next generation 3D USCT

Main objectives:

- Shorten data acquisition time
- Improve image quality
 - Adapt Region of Interest (ROI)
 - Reduce artefacts

Current ROI ~ B-cup breast

Sum of position of all breasts in pilot study

3D USCT III: ROI and aperture parameters

Trade off: Maximum feasible diameter of 35 cm and opening angle of 62°

18.09.2015

+ add transducers

Improve image quality and reduce artefacts

USCT III – Vision: current 3D USCT II aperture

Diameter 26 cm 157 TAS

With 12 positions: 10.7 Mio. A-scans

TAS diameter 2.8 cm

- 4 emitters (red)
- 9 receivers (blue)

Next generation:

- Faster DAQ → more transducers
- Larger ROI →larger aperture and opening angle
- Less artefacts → irregular and wider distributed transducer positioning

USCT III – Vision: bigger and denser aperture

Diameter 35 cm 128 TAS with 2 positions: ~10 Mio. A-scans

TAS diameter 4.15 cm ~18 transducers (pink) both emitter and receiver

- Main challenges for transducer design:
- Reproducibilit 14:25 Kai Hohlfeld et al: Fabrication and evaluation of single fiber based piezo composite transducers for 3D USCT

Summary

Karlsruhe Institute of Technology

- Breast cancer is the most common cancer for women in the western world
- 3D USCT a new imaging method aimed at early breast cancer diagnosis

First pilot study gave very promising results, second study currently beginning

- 3D USCT III:
 - Faster DAQ
 - Larger ROI
 - Randomly distributed transducer

18.09.2015

Thank you!

We acknowledge support of this project by Deutsche Forschungsgemeinschaft (DFG)

IPE USCT Group

- Algorithms / Imaging / Image Processing
 N. V. Ruiter, M. Zapf, T. Hopp, W.Y. Tan,
 H. Gemmeke, et al.
- Hardware acceleration
 E. Kretzek, M. Balzer, et al.
- TransducersM. Zapf, H. Gemmeke, et al.
- DAQ and HardwareD. Tscherniakhovski, A. Menshikov, et al.
- Design and MechanicsL. Berger, B. Osswald, T. Piller, W. Frank, et al.

Contact: nicole.ruiter@kit.edu