

Taylor flow e	xperimen	t total technicke Devendent Planthengeback				
Geometry	Square vertical mini-channel (2.1 mm side length)					
Flow direction	Co-current upward					
Gas phase	Air					
Liquid phase	Water/glycerol mixture					
Gas volume fraction	0.37±0.02	This year regular Taylor flow is				
Bubble length	3.26±0.18 mm	realized by a special injection				
Liquid slug length	1.33±0.09 mm	walve combined with a compensation pipe for eliminating pressure fluctuations				
Unit cell length	4.59±0.27 mm					
Bubble velocity	135.9±1.9 mm/s	emmating pressure nuctuations				
Capillary number	0.1	$Ca = U_{\rm B}\mu_{\rm L}/\sigma$				
Reynolds number	7.0	$Re = \rho_L D_h U_B / \mu_L$				
Measurements	Velocity field in liquid slug and liquid film (µPIV) Estimation of bubble shape from µPIV observations					
Meyer, Hoffmann, Schlüter, Int J Multiph	Flow 67 (2014) 140–148					
20.03.2015	Jahrestreffen der Proc	cessNet Fachausschüsse CFD und Mehrphasenströmungen Lüneburg				

	FS3D	τυν	DROPS	Dev _c [%]	Exp.	Dev _E [%]
Domain	V _{UC} / 4	V _{UC}	V _{UC} / 8			
Grid* (for $V_{\rm UC}$)	64×64×128	100×100×220	64×64×128			
U _B [mm/s]	135.9	135.9	135.0	0.4	135.9±1.9	0.2
L _B [mm]	3.355	3.328	3.329	0.5	3.26±0.18	2.4
L _s [mm]	1.235	1.262	1.261	1.4	1.33±0.09	5.8
∆ <i>p/L</i> _{UC} [Pa]	117.8	119.2	121.2	1.5		
J [mm ³ /s]	377.2	391.6	382.6	2.0		
J = total superficial velocity (volumetric flow rate of the two-phase flow) *Grid resolution corresponds to about 3 mesh cells per lateral film width (smallest length scale of the flow)						

	Cut	z _Β /L _Β [-]	FS3D	TUV	DROPS	Dev _c [%]	Exp.	Dev _e [%]
Bubble radius [µm]	L	0.25	952	961	960	0.6	946±8	1.2
		0.5	918	925	922	0.4	940±8	2.0
		0.75	824	825	824	0.1	847±8	2.7
	D	0.25	983	991	993	0.6		
		0.5	949	953	954	0.3		
		0.75	839	845	839	0.5		
Film thickness [µm]	L	0.25	86	77	78	7.1	92±8	12.7
		0.5	120	113	116	3.2	98±8	18.7
		0.75	214	213	214	0.3	191±9	11.9
	D	0.25	485	477	475	1.3		
		0.5	519	515	514	0.6		
		0.75	629	623	629	0.6		
Extreme value	L	$z_{\rm B}/L_{\rm B}$	0.198	0.173	0.194	1.5		
		R _{B,max-L}	959	973	967	0.8		
		$\delta_{\rm F,min-L}$	79	65	71	10.3		
	D	$z_{\rm B}/L_{\rm B}$	0.273	0.270	0.275	0.3		
		R _{B,max-D}	985	991	994	0.5		
		$\delta_{\text{E,min-D}}$	483	477	474	1.1		

Quantitative comparison of velocity profile							
Centerline axial	velocity	,					
	z _s /L _s [-]	FS3D	TUV	DROPS	Dev _c [%]	Exp.	Dev _E [%]
Liquid slug [mm/s]	0.9	146.4	152.7	146.1	2.9	141.3	5.0
	0.5	169.0	174.8	171.2	1.8	178.3	3.7
	0.1	148.9	144.9	149.0	1.8	151.2	2.4
	z _B /L _B [-]						
Bubble [mm/s]	0.75	199.0	192.8	211.46	5.2		
	0.5	270.9	264.0	284.7	4.2		
	0.25	250.6	245.0	250.6	1.5		
0.03.2015			Jahrestreffer	n der ProcessNe	Fachausschüsse	CFD und Mehrph	nasenströmungen l

	We gratefully acknowledge the funding by the DFGImport processes at luidic interfaces of or processes at luidic interfaces of or processes of or processes boot of the determined of t
27	20.03.2015 Jahrestreffen der ProcessNet Fachausschüsse CFD und Mehrphasenströmungen Lüneburg 2015