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Introduction 

• Development of a demonstration fusion power plant (DEMO) is considered as a 
crucial step towards fusion energy. Two major goals have to be achieved: 

 Fuel self-sufficiency (all the tritium has to be produced by the reactor) 

 High grade heat extraction (for electricity production). 

• Breeding blanket is the key component to ensure these two objectives. Helium 
Cooled Pebble Bed (HCPB) blanket is among most studied blanket concepts 
worldwide. 

• This work is a thermal analysis on a new version of this concept that is currently 
developed in KIT. The scope is to investigate some critical aspects of the design in 
order to evaluate the performances, in particular: 

 Blanket thermal behavior under DEMO typical pulse 

 Impact of thermal contact conductance between pebble bed and walls 

 Blanket behavior under two loss-of-coolant accidents (LOCAs). 

• A 3D slice model which reproduces a section of the blanket module has been used.  
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HCPB module 

Blanket Design and ANSYS Model 

KIT design of a DEMO 
©L.V. Boccaccini 

• The blanket has a “sandwich” layout of flat Cooling Plates  and 
alternating Li4SiO4 and Beryllium pebble beds.  

• 3D slice model consists of half thick of Li4SiO4 and Be pebble 
beds, and a CP and one and half cooling channels of FW. 

• By using this slice model, we can save computation time.  5 
3D-Slice model 
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Boundary Conditions 
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• A heat flux of 0.5 MW/m2 to FW lasts for a period of 2.5 hours (with a 30-second ramp-up 
and a 60-second ramp-down) following the plasma pulse. 

• Volumetric heat sources have the same time-dependence of the heat flux. 

• Mass flow rate in each channel of FW is ~87 g/s. 

• Optimized mass flow rates in channels of CP are used. 

 • 1D finite element method (FluidLine technique in ANSYS) 
is used to simulate heat exchange between coolant and 
blanket. 

Heat flux Mass flow rate in CP channels 
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Maximum Temperature Evolution 

7 

• FW is heated up quickly, when FW reaches high temperature; other sub-componets 
(especially CP) are still “cold”. At ~900 s, the blanket reaches the “steady state”. 

• At the plasma pulse end, FW is cooled down quickly than others. 

• These temperature differences cause thermal stresses in blanket structure. 

• The temperature field at critical time points will be used to thermo-mechanical assessment. 
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Background 

• Thermal contact conductance (TCC) between pebble beds and wall has 
a notorious influence on heat transfer between pebble beds and walls. 

• The current HCPB DEMO Blanket adopts the “sandwich” layout.  
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• Due to cracking, plastic deformation, 
relocation of the pebbles, the contact 
area between pebble beds and wall 
may change. 

• TCC is thus changed accordingly. 

• This part investigates the impact of the change on temperature of 
the blanket. 
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Boundary Conditions 

• The input TCC values have been set varying from “0.0TCC0” to “TCC0”*. 

• In the extreme case that the pebble beds in one side totally lose the 
contact with one cooling plate. 
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* where TCC0 is the original value. 

[1] Y. Gan, Thermo-mechanics of pebble beds in fusion blankets, PhD thesis, Forschungszentrum Karlsruhe, 2008 
[2] S. Song, M.M. Yovanovich, F.O. Goodman, Thermal Gap Conductance of Conforming Surfaces in Contact, Journal 
of Heat Transfer, 115 (1993) 533-540. 

• The heat transfer at the gap has been conducted by 
purge gas.  

• According to Gan et al. [1], the gap distance is 
assumed 0.29 mm 

• According to Song et al. [2], Fourier’s law of heat 
conduction can be used here. The heat transfer 
coefficient (h=k/δ) for the gap is 991 W/m2K.  
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Results of TCC Sensitivity Study 
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TCCLi4SiO4-wall 
0.0TCC0 0.1TCC0 0.25TCC0 0.5TCC0 0.75TCC0 TCC0 

Tmax. Li4SiO4, ◦C 1610 889 838 818 811 807 

Tmax. Be, ◦C 709 670 666 665 664 649 

Tmax. EUROFER, ◦C 627 547 539 537 536 536 

TCCBe-wall 
0.0TCC0 0.1TCC0 0.25TCC0 0.5TCC0 0.75TCC0 TCC0 

Tmax. Li4SiO4, ◦C 826 811 809 807 807 807 

Tmax. Be, ◦C 1257 747 695 674 666 649 

Tmax. EUROFER, ◦C 587 544 539 536 536 536 

• EUROFER and Li4SiO4 are not sensitive to TCC, while Be pebble bed is very sensitive to TCC.  

• Lack of contact may locally cause beryllium overheating, hindering the purge gas flow. 

• Therefore, it’s important to ensure a high thermal contact conductance value. 



1. Introduction 
2. Transient thermal analyses 
3. Impact of thermal contact conductance 
4. Ex-VV and In-VV LOCA analyses 
5. Conclusions 

Outline 

12 



中国科学技术大学 
University of Science and Technology of China 

Pipe break 

Ex-VV LOCA 

Boundary Conditions of Ex-VV LOCA 
• Simulation time (till 26h after accident initiation) 

• Assume: HCS to OB break; Helium lost immediately; Fast plasma shut down system operative 

13 [1] D. Carloni, Q. Kang, S. Kecskes, Thermal analysis of accidental blanket temperature, KIT/INR report, 2013. 

• Afterheat is the only remaining heat source 

• The heat is removed only by radiation 

• Radiation to VV considered @120oC, emissivity=0.35 

• Radiation to InBoard FW considered @500oC, emissivity=0.35 

Radiation to IB FW 

Radiation to VV 

Adiabatic 

Adiabatic 
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FW break 

In-VV LOCA 

Boundary Conditions of In-VV LOCA 
• Assume: FW break; Helium lost immediately; Plasma shut down immediately 
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• Afterheat is the only remaining heat source 

• Radiation to VV considered @120oC, emissivity=0.35 

• Radiation to IB FW & adjacent OB considered @500oC, emissivity=0.35 

• Heat transfer coefficient @ h=4 Wm-2K-1 

Radiation to IB FW 

Radiation to VV 

Adiabatic 

Radiation 

 to adjacent OB 

Heat convection with He 

[1] D. Carloni, Q. Kang, S. Kecskes, Thermal analysis of accidental blanket temperature, KIT/INR report, 2013. 
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Maximum Temperature Evolution 

15 

• For both accidents we observe a very similar thermal behavior, after plasma 
shutdown, Li4SiO4 and Be pebble beds are gradually cooled down by radiation, 
never exceeding design limits.  

• While the FW temperature increases firstly, reaching a maximum of 577 (575) ℃ 

• FW is far from reaching melting point(about 1400 ℃)  

Ex-VV LOCA In-VV LOCA 
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Temperature Distribution Comparison 
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• Under the assumed conditions, In-VV LOCA is less severe than Ex-VV LOCA due to 
the helium leaked into the vacuum chamber.  
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Conclusions 

• Transient thermal behavior of the blanket under DEMO typical pulse 
has been investigated. The results are the basis for future thermo-
mechanical assessment.  

• The impact of thermal contact conductance between pebble beds and 
wall on blanket temperatures has been analyzed. The result shows: 

 that the thermal contact conductance has a sensitive influence on the 
temperature of Be pebble bed while exerts a limited influence on that of 
lithium orthosilicate pebble bed and EUROFER.  

 the lack of contact may cause a local overheating of the Be pebbles, with 
possible hindering of the tritium extraction capability of the purge gas.  

• Ex-VV and In-VV LOCA analyses (DBA  with plasma shut-down) show 
that the temperature of first wall is far from melting and 
temperatures of other sub-components are inside allowable limits. 
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Thank you for your attention! 


