

Mult	iphase Model	× Secondary F	Phase ×	Vi	scous Model
Model Off Off Volume of Fluid Muture Eulerian Boiing Model Use Discrete Phase Boiing Model Use Fluid VF Model Volume Fraction Parametee Formulation Explicit Implicit Implicit Implicit	Number of Eulerian Phy 2 : Model sation	ges phase -2 Phase Pateral ar Grander Grander Deneter (m) Constant 1 = 05	v Edt	Note: Uman Statistics (Sear) Search Stress (Sear) Search Stress (Sear) Search Stress (Sear) Search Stress (Sear) Search Stress (Search Stress Search Stress (Search Stress (Search Stress Search Stress (Search	Node Constants Ora On
OK	Cancel Help	OK [Cancel	Help	OK	Cancel Help
2		Phase Interacti	on		×
Virtual Mass Drag L Drag Coefficient Drag Modification phase-2	ift Wall Lubrication Turbulent	Depension Turbulence Interaction Collisions iller-naumann v Edit. ders date sonn resets drag versal drag versal drag versal drag versal drag	Slp Heat Mass Rea	ctions Surface Tension Disc	etization Interfacial Area

<section-header><section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Schließungs-Annah			
Gleichungen	#	Unbekannte	#
Massenerhaltung Phase 1	1	α_1, α_2	2
Massenerhaltung Phase 2	1	$\overline{\mathbf{v}}_1^{V_1}, \overline{\mathbf{v}}_2^{V_2}$	6
Impulserhaltung Phase 1	3	$\overline{p_1}^1 = \overline{p_2}^2 = p$	1
Impulserhaltung Phase 2	3	$\mathbf{M}_1, \mathbf{M}_2$	6
Summenbed. der Volumenfraktionen	1	$\mathbb{T}_1^{\text{sgs}} = \mathbb{T}_2^{\text{sgs}} = 0$	0
Impuls-Sprungbedingung	3		
Gesamt	12	Gesamt	15
22 18.09.2015	,	M. Wörner, S. Erdogan VDEh Arbeit	skreis Düsseldorf

	<i>k</i> und ε Gln.	Effective viscosity	Grenzflächenterm				
<i>mixtureKEpsilon</i> (Behzadi&Rusche 2004)	$k_{\rm m} - \varepsilon_{\rm m} \rightarrow f(\rho_{\rm m})$	μ_{T}	$\phi_{k} = \frac{1 + C_{\rm D}^{4/3}}{3C_{\rm D}} W_{\rm D}$				
LaheyKEpsilon (Lahey 2005)	Standard $k_{\rm L}$ - $\varepsilon_{\rm L}$	$\mu_{\mathrm{T}}^{+0.6d_{\mathrm{B}}\alpha_{\mathrm{G}}}\rho_{\mathrm{L}}^{-} \mathbf{u}_{\mathrm{r}}^{-} $					
Olmos et al 2003	Standard $k_{\rm L}$ - $\varepsilon_{\rm L}$	$\mu_{\mathrm{T}}^{+0.6d_{\mathrm{B}}\alpha_{\mathrm{G}}}\rho_{\mathrm{L}}^{-} \mathbf{u}_{\mathrm{r}}^{-} $	_				
Olinos er. al. 2003		μ_{T}	$\phi_k = 0,75W_{\rm D}$				
$\mu_{\rm T} = C_{\mu} \frac{k_{\rm L}}{\varepsilon_{\rm L}} \qquad \begin{array}{c} {\rm Modifizierte\ Viskosit\"at}\\ {\rm nach\ Sato\ (1975)} \end{array}$							
Implementierung des $k_m - \varepsilon_m$ Modells in OpenFoam ist stabiler als die des $k_L - \varepsilon_L$ Modells, daher hier Verwendung des $k_m - \varepsilon_m$ Modells							
$\rho_{\rm L}/\rho_{\rm G} \gg 1, \ \alpha_{\rm G} \ll 1 \rightarrow k_{\rm m} \approx k_{\rm L}, \ \varepsilon_{\rm m} \approx \varepsilon_{\rm L}$							
Implementierung Olmos Modell ist in Arbeit							
48 18.09.2015	M. Wörner,	S. Erdogan VDEh Arbeitskreis Düsseldorf					

