

New insight into renewed methane increase: constraints by long-term evolution of ethane interhemispheric gradients

Petra Hausmann (KIT), Ralf Sussmann (KIT), and Dan Smale (NIWA)

INSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, ATMOSPHERIC ENVIRONMENTAL RESEARCH, IMK-IFU REGIONAL CLIMATE SYSTEMS – Atmospheric Variability and Trends

www.imk-ifu.kit.edu

Motivation – why look at methane?

IR-active vibrations

Long-term increase

Methane sources – US shale gas revolution

Methane sources – what does ethane tell us?

shares major source with methane: fossil fuel production / distribution

no significant biogenic ethane sources

- \rightarrow C₂H₆ as valuable tracer for thermogenic methane
- 4 | Petra Hausmann, R. Sussmann, D. Smale; KIT/IMK-IFU, Garmisch

FTIR spectrometry – retrieval strategies

	CH ₄	C ₂ H ₆	
strategy	Sussmann et al., 2011	NDACC recipe, 2014	
micro windows [cm-1]	2613.70 – 2615.40 2835.50 – 2835.80 2921.00 – 2921.60	2976.66 - 2976.95 2983.20 - 2983.55	
interfering species	H2O, HDO, NO ₂	H ₂ O, O ₃ , CH ₄	
line list	HIT00 + 2001 update	C ₂ H ₆ pseudo-lines (Franco et al., 2015) other species: HIT08 + 09	
regularization a priori profile	Tikhonov-L ₁ , DOFS ~ 2.0 WACCM v6	Tikhonov-L ₁ , DOFS ~ 1.6 WACCM v6	

- spectral fitting code: PROFFIT v9.6
- station-to-station harmonization of regularization strength

Trends – Zugspitze and Lauder methane trend

	trend [ppb/yr] Jan 1999 – Jun 2006	trend [ppb/yr] Jul 2006 – Dec 2014
Zugspitze (47° N)	0.76 [-0.14, 1.64]	6.29 [5.70, 6.87]
Lauder, NZ (45° S)	1.32 [0.61, 2.05]	5.94 [5.36, 6.52]

	trend [10 ⁻² ppb/yr] Jan 1999 – Jun 2006	trend [10 ⁻² ppb/yr] Jul 2006 – Dec 2014
Zugspitze (47° N)	-0.29 [-0.91, 0.35]	2.21 [1.77, 2.66]
Lauder, NZ (45° S)	-0.29 [-0.53, -0.04]	-0.38 [-0.60, -0.17]

Trends – ethane-to-methane ratio

Trends – interhemispheric gradients

IHG (XCH ₄) [ppb/yr]	-0.67 [-2.01, 0.68]	0.80 [-0.18, 1.79]
IHG (XC ₂ H ₆) [10 ⁻² ppb/yr]	0.19 [-0.45, 0.83]	2.76 [2.20, 3.31]

Two-box model – global ethane budget

Two-box model – optimize ethane emissions

Change in C_2H_6 natural gas emissions between 2006 and 2014 derived from ethane two-box model

Quantify associated methane emission change using reasonable CH_4 - C_2H_6 -ratio

Summary and outlook

- Harmonized retrieval of methane and ethane for Zugspitze (47° N) and Lauder (45° S) time series
- Long-term trend analysis for methane and ethane (1995 2014):
 - Consistent renewed methane increase in both hemispheres
 - Significant ethane increase since 2006 in the northern hemisphere
- Two-box model for hemispheric ethane budgets:
 - Minimize model-observation difference of ethane trend since 2006
 - Optimize ethane emissions from natural gas production
- Methane two-box model: quantify contribution of fossil fuel emissions to renewed methane increase

Thank you for your attention!

