

Li - Mn - O: Structures an	KIT KATSTANDE INSTITUTE OF TECHNOLOGY		
Stoichiometric Composition	c-LiMn ₂ O ₄	o-LiMnO ₂	m-Li ₂ MnO ₃
Crystal System	cubic	orthorhombic	monoclinic
Space Group	Fd-3m (227)	Pmmn (59)	C2/m (12)
Density	4.29 g/cm ³	4.22 g/cm ³	3.88 g/cm ³
Specific gravimetric Capacity (theoretical)	148 mAh/g	285 mAh/g	459 mAh/g
Specific gravimetric Capacity (in practice)	80 - 135 mAh/g	120 - 180 mAh/g	150 - 250 mAh/g
Average Manganese Oxidation State (Stoichiometric Phase)	Mn ^{+3,5}	Mn ^{+3,0}	Mn ^{+4,0}
Intercalation and Deintercalation Plateaus of Li ⁺	~ 4.0 V	~ 4.0 V / ~3.0 V	~ 3.0 V / ~4.0 V / ~4.5 V
Lattice Parameter	a = 0.8240 nm	a = 0.2805 nm b = 0.5757 nm c = 0.4572 nm	a = 0.4937 nm b = 0.8532 nm c = 0.5030 nm

Nominal Capacity	1 mAh (0.1 mAh. 0.5 mAh. 1 mAh. 10mAh
Dimension (T x W x D)	5cm x 3.8 cm x 0.037 cm
Storage temperature	-40 to 150°C
Operating Temperature	-40 to 150°C
Discharge rate	> 10C at 20°C
	> 500C at 150°C
Cyclability	< 10% capacity loss in 1,000 cycles at 20°C
	< 10% capacity loss in 100 cycles at 150°C
	http://www.excellatron.com/advantage.htm

omparison of battery pe	rforma	nces		Karisruhe Inst
Battery Type	Specific Energy (Wh/kg)	Energy Density (Wh/I)	Specific Power (W/kg)	Cycle Life
Nickel Cadmium	40	100	400	400
Nickel Metal Hydride	90	245	180	600
Lithium ion (liquid electrolyte)	155	410	300	500
Lithium Polymer	180	380	360	500
Thin Film Li-ion	250	1,041	2,500	1,000
Thin Film Li	300	959	6,000	40,000
	http://ww	w.excellatr	on.com/adv	antage.htm

infinite Power Solutions, Inc.							
THINERGY Solid-State, Rechargeable, Micro-Energy Cells (MEC:	s)			THINERGY MECONICO MEC			
	Units	MEC225	MEC220	MEC201	MEC202		
Open Circuit Voltage (OCV)	v	4.1	4.1	4.1	4.1		
Package Size/Footprint (1)	in. mm	0.5 x 0.5 12.7 x 12.7	1.0 x 0.5 25.4 x 12.7	1.0 x 1.0 25.4 x 25.4	1.0 x 2.0 25.4 x 50.8		
Package Thickness	in. mm	0.007 0.17	0.007 0.17	0.007 0.17	0.007 0.17		
Typical Internal Resistance	Ω	260	120	45	20		
Maximum Continuous Current	mA	7	15	40	90		
Nominal Capacity Options	mAh	0.13	0.3 0.4	0.7 1.0	1.7 2.2		
Equivalent Energy in Joules	J	1.8	4 5.5	10 14	24 32		
Typical Recharge Time to 90% (at 4.1V CV)	Min.	15	15	15	15		
Operating Temperature Range	°C	-40 to +85	-40 to +85	-40 to +85	-40 to +85		
Operating/Shelf Life	Years	>15	>15	>15	>15		
Recharge Cycles @		100,000	100,000	100,000	100,000		
Typical Charge Loss/Year		2%	2%	2%	2%		
Supersedes (9		MEC125	MEC120	MEC101	MEC102		

