

Advanced Steels for Water Cooled Applications EFPW 2015, Slovenia

KARLSRUHE INSTITUTE OF TECHNOLOGY - Campus Nord, INSTITUTE FOR APPLIED MATERIALS - Applied Material Physics (KIT, IAM-AWP)

www.kit.edu

Challenge

Steels for water-cooled applications in a Fusion environment

<image>

The WCLL Blanket Design

PbLi as **breeder**, neutron **multiplier** and T carrier.

Water at PWR conditions as coolant (285/325 °C at 15.5 MPa)

Irradiation up to: Starterblanket: 20 dpa 2nd blanket: 40-50 dpa

- Critical temperature regime for Irradiation hardening (T< 350°C)</p>
- Need for a combination of maximum toughness with acceptable strength

P. A. Di Maio et al., "Optimization of the breeder zone cooling tubes of the DEMO water-Cooled Lithium Lead breeding blanket", **P1.038**

EFPW Bled, 2015

3

J. Hoffmann - Advanced Steels for Water Cooled Applications

Strategies

Hypothesis: The irradiation shift in DBTT remains unaffacted

A very low DBTT (compared to standard EUROFER) could lead to an **acceptable loss of ductilty**

Can we achieve **improvements with EUROFER** by changing **thermal treatment** to meet our requirements?

What are the limits in **DBTT/Ductility** that can be reached with EUROFER?

J. Hoffmann - Advanced Steels for Water Cooled Applications

Fe-8.89Cr-0.53Mn-0.148Ta-0.18V-1.059W-0.096C-0.037N wt(%)

EFPW Bled, 2015

J. Hoffmann - Advanced Steels for Water Cooled Applications

Microstructure characterized by Electron Backscatter Diffraction (EBSD)

Invers Pole Figure Maps (after little cleanup) $M_{23}C_6$ carbides visible as black (unindexed) spots

EFPW Bled, 2015

J. Hoffmann - Advanced Steels for Water Cooled Applications

Microstructure characterized by Electron Backscatter Diffraction (EBSD)

Grain average misorientation Map

EFPW Bled, 2015

J. Hoffmann - Advanced Steels for Water Cooled Applications

Influence on Microstructure

900°C

Conventional

11

Minor changes between microstructure Additional recovery after 900°C tempering

EFPW Bled, 2015

J. Hoffmann - Advanced Steels for Water Cooled Applications

Influence on Mechanical Properties

12

J. Hoffmann - Advanced Steels for Water Cooled Applications

Yield Strength

Uniform Elongation

Optimization of EUROFER

Performing extreme heat treatments, i.e. lowest possible austenitisation and highest possible (conservatively reasonable) tempering temperature on EUROFER-2 (993402) leads to:

- Improvement in DBTT by only -5 °C (-120 °C absolute)
- Loss of LT yield strength by 100 MPa (RT 400 °C)
- An improvement in LT ductility by +2 % (uniform elongation at RT – 400 °C)
- The differences compared to the state as delivered are due to a slightly refined martensitic lath/package formation and to softening due to the higher tempering treatment (stress relief by C diffusion)

Need for special Optimized 9%Cr steels!

Optimized 9%Cr steels

Lower CARBON content

Higher VANADIUM content \rightarrow

No TUNGSTEN

Decrease amount of (coarse) M23C6 carbides

Increase number of (fine) MX precipitates

 \rightarrow Decrease solid solution strengthening

Strategies

Phase calculations (M(C,N) = TaC)

Applications

Production and TMT at OCAS

Materials in as-received state

Water quenched after rolling and TMT

TEM images

Chromium (K)

Vanadium (K)

EFPW Bled, 2015

Tungsten (L)

Tantalum (L)

Coarse precipitates

- rich in Cr, W, Ta

M23C6 carbides

Iron (K)

Fine precipitates - rich in V, Ta

V nitrides/carbides

J. Hoffmann - Advanced Steels for Water Cooled Applications

Conclusions

Improvement of 9%Cr steels for water-cooled applications is **not trivial and challengeing.**

An improvement of **EUROFER-type** steels w.r.t. low temperature applications (water cooling) by thermal treatment is **NOT PROMISING**.

Specially designed **new 9%Cr steels** for LT are one of the scopes of the EUROFUSION programme and **final results / conclusions are still pending.**

THANK YOU FOR YOUR ATTENTION!

J. Hoffmann - Advanced Steels for Water Cooled Applications