FP7-269665: Fast Reactor Experiments for hYbrid Applications

Mid-term review meeting Brussels, 27-28 January 2015

Deliverable D2.1 Luigi Mercatali

Brussels, 27-28 January 2015

Deliverable D2.1 MYRRHA Sub-critical Mock-up Definition

Luigi Mercatali _{KIT}

luigi.mercatali@kit.edu

Brussels, 27-28 January 2015

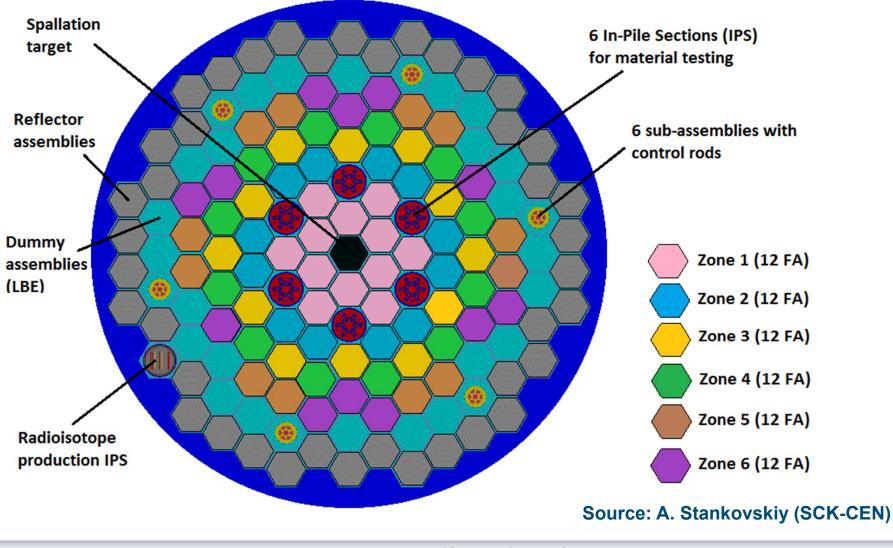
D2.1 - Contents

Contents

			EUROPEAN
1	Introduction	3	COMMISSION
2	The MYRRHA Project 2.1 MYRRHA Core Description 2.2 Important Parameters for a MYRRHA Mock-up in VENUS-F 2.2.1 Neutronics 2.2.2 Safety Parameters 2.2.3 Flexibility of the core design	3 3 4 4 4 4	Community research
3	Modifications to the Existing VENUS-F Core within the FREYA Project 3.1 Actual VENUS-F Core Design 3.2 Neutronic Characterisation of the Existing VENUS-F Core compared to the MYRRHA Core	4 4	MYRRHA SUBCRITICAL MOCK-UP DEFINITION
	3.3 Limitations for the VENUS-F Core Modifications within the FREYA Project 3.3.1 Fuel Choice 3.3.2 Reflector	7 7 7 7	Fast Reactor Experiments for hYbrid Applications FREYA
4	Pathways for the MYRRHA Mock-up in VENUS-F 4.1 Combining MOX fuel with the existing metallic U fuel 4.2 Introduction of Al_2O_3 in the VENUS-F Core 4.3 Bismuth	8 9 13	Contract (grant agreement) number: 269665
5	Discussion and Future Work	14	Authors: Wim Uyttenhove, Xavier Doligez, Anatoly Kochetkov, Antonin Krasa, Luigi Mercatali, Gert Van den Eynde, Guido Vittiglio, Jan Wagemans
6	Conclusion	14	
Tas	k 2.1: MYRRHA Subcritical Mock-up Definition		

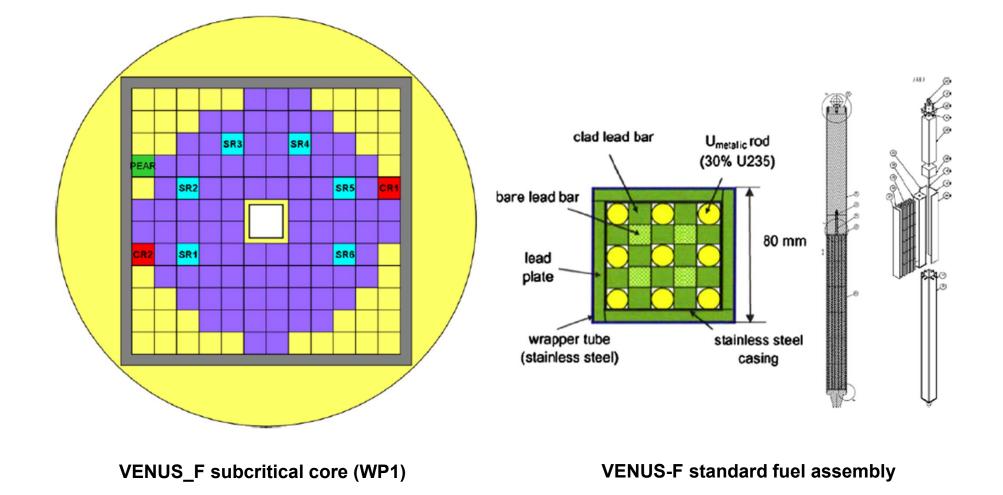
(Task leader: <u>SCK•CEN</u>)

EURATOM

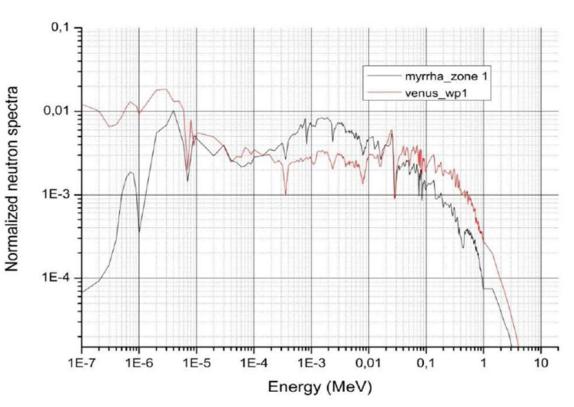

FREYA

D2.1 - MYRRHA Subcritical mockup definition

D2.1 - Preamble


- Due to the correlation between WP3 and WP2, when performing Task 2.1 one is also performing Task 3.1.
- Since 2013 a number of studies based on a number of different ideas have been conducted in order to define a new VENUS-F configuration "representative" of the MYRRHA core.
- MCNP (KIT, SCK-CEN, CNRS, ENEA) and ERANOS (ENEA) calculations have been performed.
- Some of the ideas have been discarded due to different reasons and D2.1 is a summary of the major findings updated at 30.10.2013
- Even if officially closed, a huge deal of work has continued since D2.1 due to the interaction with the MYRRHA team which from time to time has provided new input to the FREYA community → D3.1 issued on 06.10.2014.
- On January 2015 some modifications of the MYRRHA design have been introduced and additional requests were made to WP2.

D2.1 – MYRRHA sub-critical core description



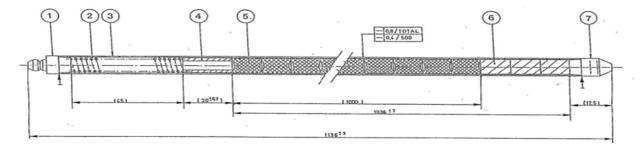
Brussels, 27-28 January 2015

D2.1 – VENUS-F/WP1 descritpion

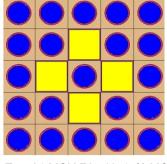
D2.1 – Neutronic characterization of the existing VENUS-F core compared to MYRRHA

Representativity criteria:

- 1. Neutron spectrum
- 2. Kinetics parameters
 - β_{eff} = 722 ± 10 pcm (VENUS-F) β_{eff} = 320 ± 10 pcm (MYRRHA)


F28/F25	F49/F25	F40/F25	C28/F49		
VENUS MYRRHA	VENUS MYRRHA	VENUS MYRRHA	VENUS MYRRHA		
3,48E-02 2,88E-02	1,14E+00 9,93E-01	3,50E-01 2,58E-01	1,24E-01 1,44E-01		

Spectral indexes


D2.1 – Pathways for the MYRRHA mock-up in VENUS-F (1)

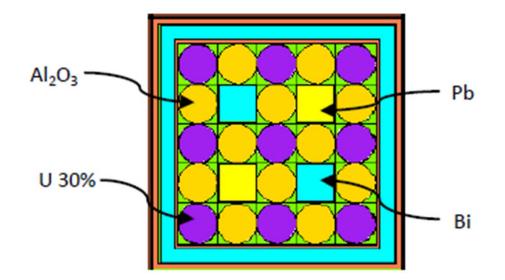
Combining MOX fuel with the existing metallic U fuel

- Investigations on the feasibility of a critical configuration loaded with MOX 30%
 FAs have been performed in the past (ENEA).
- No longer possible due to the lack of fuel.
- 230 MOX 14% enriched pins are available at SCK-CEN

MOX 14% Type 21 FA

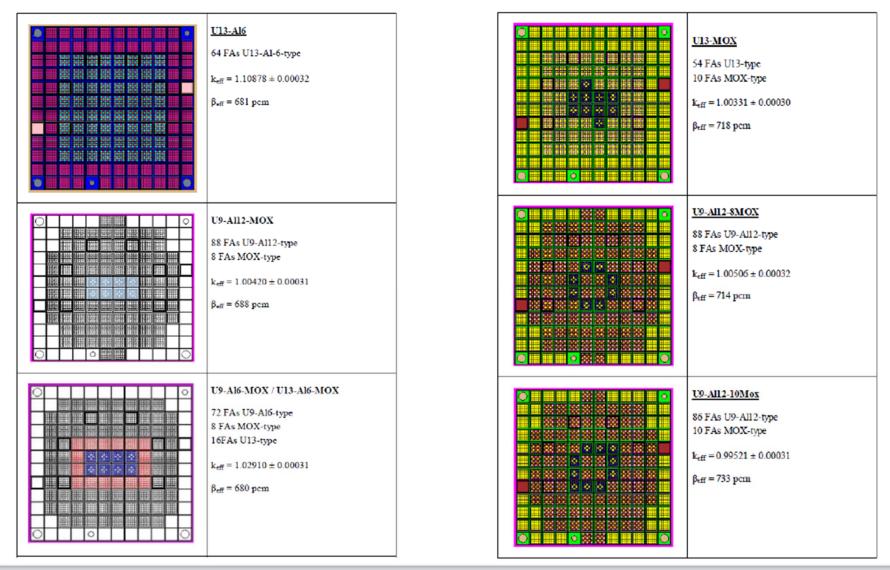
Type21 MOX FA with 14% MOX pins; k_{inf} = 1.04

D2.1 – Pathways for the MYRRHA mock-up in VENUS-F (2)


Introduction of Al₂O₃ in the VENUS-F core

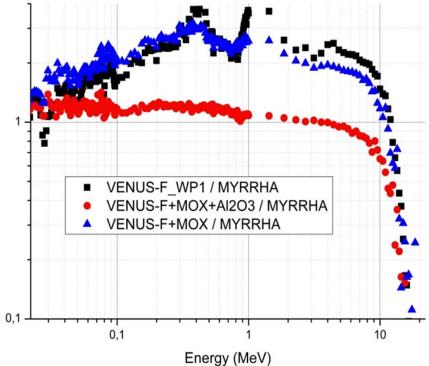
- The general shape of the neutron spectrum is mainly dominated by the oxygen present in the fuel: VENUS-F loaded with UOx would have a similar "behavior" of VENUS-F loaded with MOX.
- Possibility to "simulate" the UOx by means of a combination of metallic uranium and aluminum oxide (Al₂O₃) rodlets.

D2.1 – Pathways for the MYRRHA mock-up in VENUS-F (3)


Introduction of Bismuth in the VENUS-F core

D2.1 – Main results

- A calculation campaign has been performed with the MCNP5 code and JEFF3.1 nuclear data with the purpose to get a critical configuration assuming a limited availability of materials
 - 97 Type-9 FAs/67 Type-13 FAs
 - $-2400 Al_2O_3$ rodlets (30 cm length)
 - 2000 Bismuth rodlets (30 cm length)
 - 10 Type 21 MOX 14% FAs
- Effects on reactivity:
 - MOX: negative
 - Al₂O₃ positive
 - Bi: negative


D2.1 – VENUS-F configurations (MYRRHA-like)

Brussels, 27-28 January 2015

D2.1 – The U9Al12-8MOX-LBE configuration

Brussels, 27-28 January 2015

88 U9-AI-LBE FAs					
		F28/F25	F49/F25	F40/F25	C28/F49
8 MOX Type 21 FAs	VENUS-F	0.0348	1.14	0.350	0.124
$k_{eff} = 1.00339 \pm 0.0044$	MYRRHA	0.0288	0.993	0.258	0.144
	U9-A112-8MOX averaged over the fuel	0.0333	1.04	0.284	0.125
β _{eff} = 718 pcm ± 10 pcm	U9-A112-8MOX in a central U fuel assembly	0.0175	0.991	0.184	0.279
	U9-A112-8MOX in central MOX fuel assembly	0.0159	0.981	0.178	0.271

FREYA mid-term review m	eeting
-------------------------	--------

D2.1 - Conclusions

- In FREYA/WP2 the methodology for on-line sub-criticality monitoring should be tested on a MHYRRA-like sub-critical mock-up inside VENUS-F.
- With all the available 230 pins of MOX 14% arranged in a *Type* 21 FA a critical configuration is possible but it would require almost the total amount of metallic uranium available. The MOX "island" inserted would represent a very small part of the core and the spectrum would be slightly representative of MYRRHA in the centre.
- It is also possible to simulate the neutron slowing down by adding oxygen via aluminium and in this case the spectrum would be additionally softened towards a general shape quite representative of MYRRHA.
- None of the options considered are relevant for MYRRHA in terms of kinetics parameters (β_{eff} higher by a factor of ~2 with respect to the target values).

D2.1 - Follow-up studies

- The insertion of the MOX island into VENUS-F leads to technical challenges and longer time for licensing. These complications are not compensated by the addedd value of the MOX insertion → the MOX option is abandoned within FREYA/WP2 (maybe it will be considered again in the future).
- The Al₂O₃ is confirmed to be a valuable option to simulate the oxyde behaviour within the WP2 experiments but a new FAs has been proposed and selected for the core loading of WP2/WP3: the U13Al4Pb8 FA
- In deliverable D3.1 the updated reference critical configuration for the WP2 experiments is described (see presentation by A. Krása)
- Since January 2015 slighly new modifications are being proposed