

Inactive Electrode Materials and Slurry Preparation

Werner Bauer

INSTITUTE FOR APPLIED MATERIALS – CERAMIC MATERIALS AND PROCESSING (IAM-KWT)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Inactive Materials

Which role play inactive materials for the manufacturing of electrodes and the application properties of cells?

Selected Relevant Publications

- No model comprises a complete description of the realistic distribution.
- Interaction of components is usually ignored.
- Prediction of complex electrode behavior is not feasible.

R. Dominko et al. / Journal of Power Sources 119–121 (2003) 770–773

Guerfi et al, J. Power Sources

63 (2007) 1047–1052

Zhu et al, J. Electrochem. Soc. 158 [10] (2011) A1155-A1159

Komaba et al, J. Phys. Chem. C 115 (2011) 13487–1349

Guy et al., J. Electrochem.

Soc.153 [4] (2006) A679-A688

Liu et al, Adv. Mater. 23 (2011) 4679–4683

Liu et al, J. Electrochem. Soc. 159 [3] (2012) A214-A221

K. Wang et al, J.Power Sources 233 (2013) 209e215

Homogeneous Carbon Black Distribution by Dry Mixing

- Dry Mixing of NMC with carbon black
- Nobilta NOB-130 (Hosokawa Alpine)
- Agitation by fast rotating paddles

Deposition of carbon black on the NMC surface

Significance of Binder-Carbon Black Distribution

23.09.2015

Effect of Additional Carbon Black or Graphite

- Conductive additives are required to suppress the insulating effect of the binder.
- Immobilized carbon phase is insignificant to electrode conductivity.
- Electrode properties are determined by the interaction of binder and conductive aids.

The Role of the Binder - Fixation

- Adhesion of electrode layer on current collector
- Providing mechanical integrity by localization and fixation of the particles
 - Active materials
 - Conductive additives

NMC, 4 wt.% carbon black, 3 wt.% PVDF

The Role of Conductive Additives

- Improvement of electronic conductivity
- Formation of conductive paths to current collector
- Set-up of a percolation structure connecting the entire active material

Source: Fortulan & Souza, Materials Research, Vol. 2, No. 3, 205-210, 1999

Conductivity Network

11

- Percolation threshold is lowered by geometrical constraint of active materials.
- Percolation structure also depends on fractal dimension of the conductive aid.
- For carbon black this corresponds with the level of deaglomeration.
- Higher percolation threshold is caused by an optimized carbon black deagglomeration.

(IAM-KWT)

Slurry Preparation

- Electrode components: 94 wt.% NMC, 3 wt.% carbon black, 3 wt.% PVDF
- Solid content of NMP based slurry: 25 vol.%
- Two stage mixing with dissolver

Slurry Rheology

- Viscosity is reduced by intensive mixing
- All slurries keep a stabilizing gel structure

Electrode Properties

- Shear load reduces the (transition) resistance of the electrode.
- Intense mixing will involve an decrease of the conductivity once more.
- Effects are only detectable at moderate compression.

Electrochemical Properties

- Heavy scattering and decreased capacity at low electrode densification.
- Tendency of capacity reduction after intensive mixing.
- Moderate mixing seems to be more beneficial for electrode properties.

Electrode Structure

- No significant differences detectable in SEM micrographs.
- Indication on enhanced occurrence of isolated carbon black fragments.

Outlook

- Investigation of process-structure-property relationship
- Determination of the spatial distribution of additives
- Development of process and structure models

Thank you for your attention.

