Active pixel sensors in ams H18/H35 HV-CMOS technology for the ATLAS HL-LHC upgrade

10th International "Hiroshima" Symposium Xi'an, China

Branislav Ristić CERN / Université de Genève

On behalf of the ATLAS HVCMOS R&D Collaboration

LHC Upgrade

- LHC upgrade to higher luminosities planned for 202x
 - Integrated luminosity: 300 fb⁻¹ → 3000 fb⁻¹
- Hybrid detectors proven to be rad-hard enough
- Main drawback: Price
 - Bump bonding expensive due to special processes
 - Sensor processes non-standard + on small wafers
 - ITk requires ~100-200m² of silicon → price matters

LHC Upgrade

- LHC upgrade to higher luminosities planned for 202x
 - Integrated luminosity: 300 fb⁻¹ → 3000 fb⁻¹
- Hybrid detectors proven to be rad-hard enough
- Main drawback: Price
 - Bump bonding expensive due to special processes
 - Sensor processes non-standard + on small wafers
 - ITk requires ~100-200m² of silicon → price matters

- ... and interconnection technologies
- Commercially available by variety of foundries
 - Large volumes, multiple vendors
- 8" to 12" wafers
 - Low cost per area, wafer thinning quite standard
- usually p-type Cz silicon
 - Thin active layer, helpful to disentangle tracks in boosted jets and at high eta
 - Requires low capacitance → small pixels

HV-CMOS sensors in ams technology

Austria Micro Systems offers HV-CMOS processes with 180nm and 350nm feature size

- Several substrate resistivities O(10 1000)Ωcm
 → N_{eff} > 10¹¹...10¹⁴/cm³
- Collecting electrode and HV isolation → Deep N-Well
- Biasing of substrate to ~60-100V(H18) ~150V (H35)
- Depletion depth theoretically in the order of 10 100μm
 → Drift signal ~500...O(1000)e-
- On-sensor amplification possible and necessary for good S/N
 - Key: small pixel sizes → low capacitance → low noise
- Additional circuits, e.g. discriminator
 - Adjustable high output signal
 - Capacitive coupling (CCPDs)
 - Sub-pixel encoding (small pixels)
- Hybridization by gluing using flip chip machines
 - Glue thicknesses of several µm reached
 - Below 1 μm precise alignment

A short story of ams CCPDs for ATLAS

→ see Zhijun Liang's poster

Irradiation of H18CCPDv4 samples

X-Ray irradiation up to 1000MRad (158.4MRad/day): stand alone CCPD V4, powered

- Increase of leakage current after 400 MRad
 - Drops to 380 nA after 26 days of annealing at room temperature
 - → High temperature annealing not necessary
- Amplifier with linear and circular feed back transistor investigated
 - Linear FB transistor shows noise after 100MRad
 - Circular FB transistor remains quiet up to 1GRad → Fe-55 peak clearly visible

Irradiation of H18CCPDv4 samples

X-Ray irradiation up to 1000MRad: stand alone CCPD V4, powered

- Amplifier output signal recovered by annealing at room temperature and retuning
 - Relative amplitude of linear FB transistor: 88%, but noisy
 - Relative amplitude of cicrular FB transistor: 62%

Proton irradiation up to 560MRad:stand alone CCPD V4, powered

- No annealing or retuning performed
 - Relative amplitude of linear FB transistor: 75%, but noisy
 - Relative amplitude of cicrular FB transistor: 63%
- Investigation ongoing

Testbeam results on H18CCPDv4 samples

- Multiple testbeam periods during last 1.5 years
- Performed using new FEI4 based telescope
 - Resolution at DUT ~8/12um for typical telescope configuration
- Two H18CCPDv4 samples tested
 - 402: unirradiated and 404: 1x10¹⁵n_{eq}cm⁻²
 - Subpixel encoding not tested → FE-I4 pixel pairs merged

• High efficiency of 99.7% before and 96.2% after irradiation

Telescope Planes

Bias and threshold Scans

- Bias scan from 0V to breakdown voltage performed
 - Diffusion contributes significantly to signal in unirradiated case
 - Early breakdown prevented optimal performance (especially in case of irradiated sample)
 - H18v4 samples can be biased up to ~95V → New data expected this year
- Threshold scan from close to the noise edge to up to several thousand electrons performed
 - Detection efficiency depends highly on properly tuned sample (if not biased with high voltages)

Timing comparison

- Output signal shows broad timing distribution of several bunch crossings
- Slow signal/tail suppressed after irradiation hinting on trapping of diffusion component
 - Improvement of timing can be reached by higher bias voltages → higher drift fraction of signal
- ATLAS requires signal generation in one bunch crossing
 - → Time walk compensation in H18v5

(Edge) Transient Current Technique

TCT (Transient Current Technique): record time-resolved charge collection

- Charges usually generated via infrared laser, shot into the bulk of sensor
 - Constant charge deposition per pulse → averaging over many pulses cancels noise
- Observables: Transient current (charge movement) Integrals (collected charge)
- Fast signals (~ns) → External amplification, fast readout with scopes
- Edge TCT: shooting in through the side-wall of the sensor with a IR laser
 - Can study the charge collection at different depths → depletion?

Why E-TCT?

- Expected depletion depth for 10 Ohm*cm around 10 μm → 500-600e for a MIP
- Observed: ~1500-1900 e⁻ (~1200 e⁻ after irradiation) from in-pixel charge-sensitive amplifiers
 - Origin of discrepancy unclear

Christian Gallrapp CERN / PH-DT-DD

E-TCT on ams samples

Measurements on H18CCPDv3 samples

- 10Ω cm substrate, max. ~90V bias
- One dedicated passive 100 x 100 μm² diode accessible –
- No neigbours → possible edge effects
- Irradiation at CERN PS (Irrad 1) without biasing
 - Fluences: 2.3, 6 and 11.1x10 15 p/cm 2 (1.42, 3.72 and 6.9x10 15 n_{eq}/cm 2)
 - p-irradiated samples cooled to 0 degrees for measurement
- Irradiation at JSI Ljubljana, Slovenia
 - Fluences: 1, 7, 20x10¹⁵ n_{eq}/cm²
- Collected charge obtained as integral over 5ns

Measurements on H35 samples (CHESS1)

- 20Ωcm substrate, max. 120V bias
- 100 x 45 μm² diodes forming an array accessible
- Irradiation at JSI Ljubljana, Slovenia
 - Fluences: 0.2, 0.5, 1, 2, 5, 10x10¹⁵ n_{ea}/cm²
- Collected charge obtained as integral over 25ns (!)

E-TCT results of ams H18 Samples

- Relative charge collection (CC) after neutron irradiation
 - CC at 0V after $1x10^{15}$ n_{eq} /cm² near 0 \rightarrow Diffusion component degraded by trapping

CERN / PH-DT-DD Université de Genève

- Can be recovered to 85% even after 2x10¹⁶ n_{eq}/cm²
- Collected charge doubled in case of $7x10^{15}$ n_{eq} /cm² \rightarrow Acceptor removal effect \rightarrow Deeper depletion zone
-and after proton irradiation
 - CC exceeds unirradiated case at below 10V
 - Largest collection after $1.42 \times 10^{15} \, n_{eq}/cm^2$ (p irradiation) reaches relative CC of up to 6 at 80V
 - → Acceptor removal for protons much stronger than for neutrons at that fluence
 - Comparable after $7x10^{15} n_{eq}/cm^2$: 1.9 (n) vs. 2.2 (p) at 80V

Depletion depth on H18 and H35 samples

ienève

- Depletion depths obtained as FWHM of scanning over y
- H18 and H35 samples yield comparable results
 - 1x10¹⁵ n_{ea}/cm² inconclusive: Precise knowledge of fluence crucial
- Results confirm charge collection measurements
 - Discrepancy between proton and neutron irradiation
 - Equal charge collection for $\sim 7 \times 10^{15} \, n_{eq} / cm^2$

The AMS H35 Demonstrator

IFAE | KIT University of Liverpool

- Engineering run, proving feasibility of full reticle size sensors
- Built in AMS H35 350nm HV-CMOS process
- Substrate resistivities: 20, 80, 200, 1000Ω cm
- Submission on-going

Floorplan

- Analog pixels (only amplifiers) for FEI4 coupling
 - 3 flavours optimized for gain and/or speed
- Standalone NMOS matrix
 - Different in-pixel amplifiers and discriminators
 - Read out by FE-I4 or an FE-I3 like digital structure at periphery
- Standalone CMOS matrix
 - Different in-pixel amplifiers
 - Can be read out by FE-I4
 - CMOS discriminators at periphery and FE-I3 like digital structure at periphery

The AMS H35 Demonstrator

IFAE | KIT University of Liverpool

- Timewalk has been addressed by a timewalk compensating discriminator
- Post design simulation reveals significant improvement especially for low charges
- Higher substrate resistivities will yield higher signals, further mitigating this issue
 - Possible backside implant for HV biasing → homogenious E-field through bulk

Summary and outlook

- HV-CMOS sensors are promising sensor candidates for the upgrade of the ATLAS Inner Tracker
 - Very good detection performance and radiation hardness
 - Cost efficient (standard processes and gluing instead of bump bonding)
 - Offered by various vendors and in big volumes
- Testbeam measurements yield detection efficiencies of up to 99.7% for irradiated and 96.2% for 1x10¹⁵n_{ea}cm⁻² irradiated samples under non-optimal conditions
- Deteorioration of Amplifier signals after irradiation with ionizing particles can be mitigated by room temperature annealing and retuning
- Timewalk issue has been identified and addressed by improved comparator design
- Edge TCT measurements show improved charge collection for irradiated sensors due to the acceptor removal effect
 - Up to 6 times (2 times for neutron irradiation) the initial charge collected for 1...2x1015neqcm-2
- Full size demonstrator design in H35 technology prepared
 - Production on several (high) bulk resistivities for improved SNR
 - Back side metallization by ams possible
- Mu3e tracker will be built as HV-CMOS MAPS → Implementation for ATLAS conceivable

Backup

HV Biasing - bulk resistivity and contact position

E-Field Lines - High resistivity (1 kOhm*cm)

