XAFS16 Karlsruhe

Karlsruhe Institute of Technology

Institute for Nuclear Waste Disposal (INE)

Comparative U, Np and Pu M edge high energy resolution X-ray absorption spectroscopy (HR-XANES) investigations of model and genuine active waste glass

S. Bahl*¹, V. Koldeisz^{1,2}, E. Bohnert¹, E. González-Robles¹, D. Schild¹, B. Kienzler¹, K. O. Kvashnina³, J. Rothe¹, K. Dardenne¹, J. Boshoven⁴, L. Martel⁴, I. Pidchenko¹, T. Prüßmann¹, G. Roth¹, H. Geckeis¹, T. Vitova¹

¹Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany, *e-mail: sebastian.bahl@kit.edu

²Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary

³European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble Cedex 9, France

⁴European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany

High level waste (HLW) from nuclear fuel reprocessing is immobilized in borosilicate glass matrices to generate a disposable waste form [1]. The understanding of the long term behavior of "Verglasungseinrichtung Karlsruhe" (VEK) glass, or any other type of glass, requires a full and detailed characterization of the materials as-synthesized and during exposure to the environment. Industrial glasses are complex, and here we take a simplified separate effect approach to elucidate key structural properties and compare them for model glass and VEK glass sampled from the vitrification process of HLW. In particular, here we present a comparative investigation of U, Np and Pu oxidation states determined by U/Np/Pu M edge high energy resolution X-ray absorption near edge structure technique (HR-XANES) recently established at the INE-Beamline, supplemented by XPS and EXAFS investigations.

Background of VEK glass

The Karlsruhe Reprocessing Plant (WAK):

- operated from 1971 to 1991 (reprocessing SNF)
- ~60 m³ of highly active waste concentrates (HLW) stored on-site in liquid form
- Before decommissioning: HAWC vitrification

U(VI) found

of U(IV)

of U loading

the Pu loading

PuO₂ clusters

HLW vitrification plant (VEK):

- Project start: 1996
- Cold test: April July 2007
- Hot operation: Sep. 2009 Nov. 2010

The HR-XANES method

High energy resolution X-ray emission spectrometer

■ Energy resolution: 0.5 – 2 eV

New spectral features are revealed

- HR-XANES – U and Pu doped model glass - XPS and EXAFS – VEK and U doped model glass

- U(IV) U(VI) containing and regions
- Strong U(VI)/U(IV) variations on the glass surface
- Similar U(VI) and U(IV) content for powder samples

of U are currently discussed

Summary of results and raised questions

Model and VEK glasses contain predominantly U(VI), Pu(IV) and Np(IV)/Np(V)?

The oxidation state of U weekly depends on the U loading; no An-An interaction is found

Can intrinsic radiation induce U reduction similar to the observed X-ray radiation damage?

Reference

[1] R. J. Short, Möbus, G., Yang, G., Hand, R.J., Hyatt, N., Lee, W.E., *Materials Research Society Symposium Proceedings* 2004.

Acknowledgement

XPS and HR-XANES results indicate formation of U clusters with dominating U(IV) and U(VI)

 \Box U(IV) is not expected in the prepared in oxidizing conditions glass \rightarrow possible redox partners

in the surface and in the bulk, respectively \rightarrow verification of cluster formation by TEM

We gratefully acknowledge KIT and the Helmholtz Association of German Research Centers for the financial support (VH-NG-734). We thank ESRF and ANKA for the granted beamtime.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu