

NURESAFE WP1.4 HIGHER-RESOLUTION VVER MSLB

KIT results for the Hot assembly BC problem using COBRA-TF and SUBCHANFLOW

J. Jimenez, V. Sanchez

Presented by V. Sanchez

victor.sanchez@kit.edu or javier.jimenez@kit.edu

- A fine mesh preprocessor for hexagonal geometry was produced and tested: Hexbundle
 - Working for SUBCHANFLOW and COBRA-TF.
 - Operative SUBCHANFLOW MEDCoupling interface was released on 09.03.2015, generation of MED files enabled.
 - Adaptation of the MEDCoupling interface recently achieved in COBRA-TF (June 2015).
- Calculation of hot assembly problem with provided BC is reported here.
 - The COBRA-TF input decks plus python scripts can be found in the next folder:

https://www-svn-corpus.cea.fr/nuresafe/SAT/TEST/RESSOURCES/data/cobratf/VVER-1000/transient/KIT-HOT-CHANNEL

• The whole SUBCHANFLOW input decks can be found in the next folder:

https://www-svn-corpus.cea.fr/nuresafe/SAT/TEST/RESSOURCES/data/scf/VVER_Hot_Assembly_BC_problem

Conclusion and Outlook

Fine mesh preprocessor (KIT Fortran code)

You can find it in the svn repository /SAT/TEST/RESSOURCES/HexBundle

URESAFE

- Fully operational for SUBCHANFLOW and COBRA-TF geometry tables generation.
- Inclusion of Guide tubes and instrumentation rods in SCF.
- MEDCoupling enabled in SCF and CTF.
- TO DO
 - Extension to minicores

Fine mesh preprocessor (KIT Fortran code)

Few input parameters:

URESAFE

- Number of rods in the bundle (fuel and guide tubes). (37)
- Pitch between the fuel pins. (12.81380e-3 m)
- Side length of the aristae. (47.408e-3 m)
- Rod diameter. (9.1455e-3 m)
- Guide tube diameter. (12.663e-3 m)
- Instrumentation rod diameter. (11.256e-3 m)

Fine mesh preprocessor (KIT Fortran code)

Subchannel types are predefined:

NURESAFE

Type (tchan)	Shape	Area	Wetted Perimeter	Heated Perimeter
1 Central subchannel		pitch²· √3/4 - 0.5·rod_area	0.5·rod_perimeter	0.5·rod_perimeter
2 Lateral subchannel		pitchb·pitch - 0.5·rod_area	0.5·rod_perimeter	0.5·rod_perimeter
3 Corner subchannel		pitchb·pitch + 0.5·pitchb ² ·tan(30) - rod_area·(7/12)	rod_perimeter (7/12)	rod_perimeter· (7/12)
4 Guide tube subchannel	×××	pitch²· √3/4 – 1/3·rod_area – 1/6 guideT_area	1/3·rod_perimeter+ 1/6·guideT_perimeter	1/3·rod_perimeter
5 Instrumentation rod subchannel		pitch²· √3/4 – 1/3·rod_area – 1/6·InstR_area	1/3·rod_perimeter+ 1/6·InstR_perimeter	1/3·rod_perimeter

NURESAFE Fine mesh preprocessor (KIT Fortran code)

The final goal was to be able to mesh the hot FA

MESH DETAILS: 331 fuel rods 660 subchannels 876 gaps

COBRA-TF deck.inp includes unheated structures ('tube' keyword), this is properly treated in the thermal mesh.

NURESAFE

- Changes in the CTF API were done.
- New method fine_triangular_mesh_external taken from SUBCHANFLOW API (July 2015).
 - All the geometrical information could not be read from the deck.inp, natural input of COBRA-TF.
 - Channels coordinates (YES)
 - Rods coordinates (NO: arrays does not exist)
 - Coordinates are read from external files as auxiliary solution.
 - mesh_parameters.txt
 - table_rods.txt
- - table_channels.txt
 - table_levels.txt
 - Those files are also generated by the hexbundle tool. ٠

cd NURESAFE_TEST/RESSOURCES/HexBundle/ ./compile.sh cd VVER-1000-FA

../hexbundle ! This will generate ./merge.sh ! Create the deck.in source /your/environmental/file python run_CTF.py

You can open the CTF_FINE_MESH PARAVIEW

- Modification of getOutputMEDField to dump the code results in the new MEDCoupling object (GRS-KIT).
- Restructuring of mesh generation methods within COBRA-TF API (GRS-KIT, July 2015 in a 4 days stay in Garching).
- Extension of the hexbundle tool to also deal with unheated structures and generate a complete CARD 8 for COBRA-TF, new array NOSLCHC for CARD 8.5 (KIT).

 A preliminary pin power distribution which corresponds to the HFP state was used taken from the OECD-UAM Phase II Specifications document.

SUBCHANFLOW steady state bundle average

distance (m)	delta-p (pa)	temperature (c)	t_sat (c)	density (kg/m3)	equil. quality	osv quality	flow (kg/s)	velocity (m/s)	Reynolds
0.0000	90959	288.51	346.35	749.47	-0.3868	0.0000	105.61	5.5047	468970
0.1183	88179	289.1	346.33	748.37	-0.3833	-0.0087	105.61	5.5128	469630
0.2367	85400	289.69	346.31	747.26	-0.3798	-0.0123	105.61	5.5210	470680
0.3550	82049	290.41	346.30	745.90	-0.3756	-0.0149	105.61	5.5311	472040
0.4733	79272	291.19	346.28	744.39	-0.371	-0.0164	105.61	5.5422	473610
0.5917	75922	292.01	346.27	742.81	-0.3662	-0.0171	105.61	5.5541	475280
0.7100	73148	292.85	346.25	741.18	-0.3613	-0.0176	105.61	5.5663	477010
0.8283	69799	293.7	346.23	739.51	-0.3563	-0.0179	105.61	5.5789	478780
0.9467	67028	294.57	346.22	737.80	-0.3513	-0.0181	105.61	5.5917	480590
1.0650	63679	295.44	346.20	736.06	-0.3462	-0.0184	105.61	5.6050	482430
1.1833	60909	296.32	346.19	734.29	-0.3410	-0.0187	105.61	5.6185	484320
1.3017	57559	297.22	346.17	732.47	-0.3357	-0.0191	105.61	5.6325	486240
1.4200	54790	298.13	346.16	730.60	-0.3303	-0.0195	105.61	5.6469	488210
1.5383	51438	299.06	346.14	728.67	-0.3248	-0.0199	105.61	5.6618	490230
1.6567	48668	300.01	346.13	726.68	-0.3191	-0.0205	105.61	5.6773	492310
1.7750	45899	300.99	346.11	724.62	-0.3133	-0.0211	105.61	5.6935	494480
1.8933	42543	302.00	346.09	722.47	-0.3072	-0.0219	105.61	5.7104	496710
2.0117	39773	303.05	346.08	720.22	-0.3010	-0.0227	105.61	5.7282	499050
2.1300	36412	304.13	346.06	717.87	-0.2944	-0.0237	105.61	5.7470	501490
2.2483	33640	305.25	346.05	715.38	-0.2876	-0.0248	105.61	5.7670	504060
2.3667	30273	306.43	346.03	712.76	-0.2805	-0.0261	105.61	5.7883	506770
2.4850	27497	307.67	346.02	709.96	-0.2730	-0.0275	105.61	5.8110	509650
2.6033	24123	308.96	346.00	706.99	-0.2650	-0.0290	105.61	5.8355	512700
2.7217	21344	310.32	345.98	703.82	-0.2566	-0.0307	105.61	5.8618	515970
2.8400	17961	311.75	345.97	700.43	-0.2478	-0.0324	105.61	5.8901	519450
2.9583	15178	313.22	345.95	696.86	-0.2386	-0.0339	105.61	5.9203	523170
3.0767	11785	314.73	345.94	693.13	-0.2290	-0.0350	105.61	5.9521	527060
3.1950	8998.8	316.23	345.92	689.36	-0.2196	-0.0349	105.61	5.9847	531100
3.3133	6210.1	317.63	345.91	685.78	-0.2106	-0.0330	105.61	6.0160	535110
3.4317	2799.1	318.81	345.89	682.67	-0.2029	-0.0283	105.61	6.0433	538760
3.5500	0.0000	319.34	345.88	681.28	-0.1994	-0.0251	105.61	6.0557	541750

COBRA-TF steady state bundle average

distance	Vol. Frac.	Temperature	Pressure	Enthalpy mixt	equil.	flow
(m)	Lıq (-)	(C)	(pa)	(KJ/Kg)	quality	(kg/s)
0.000	1.0	288.52	0.9182	1276.3	-0.384	105.61
0.118	1.0	288.85	0.89043	1278.0	-0.382	105.61
0.237	1.0	289.36	0.86267	1280.7	-0.379	105.61
0.355	1.0	290.03	0.82898	1284.2	-0.375	105.61
0.473	1.0	290.8	0.80099	1288.2	-0.371	105.61
0.592	1.0	291.61	0.76728	1292.4	-0.366	105.61
0.710	1.0	292.44	0.73933	1296.8	-0.361	105.61
0.828	1.0	293.29	0.70566	1301.3	-0.356	105.61
0.947	1.0	294.15	0.67778	1305.9	-0.352	105.61
1.065	1.0	295.01	0.64414	1310.5	-0.347	105.61
1.183	1.0	295.89	0.61631	1315.2	-0.342	105.61
1.302	1.0	296.78	0.58268	1320.0	-0.336	105.61
1.420	1.0	297.69	0.55487	1324.8	-0.331	105.61
1.538	1.0	298.61	0.52122	1329.8	-0.326	105.61
1.657	1.0	299.55	0.49336	1334.9	-0.32	105.61
1.775	1.0	300.52	0.46554	1340.2	-0.315	105.61
1.893	1.0	301.51	0.43183	1345.6	-0.309	105.61
2.012	1.0	302.54	0.40397	1351.3	-0.303	105.61
2.130	1.0	303.60	0.37016	1357.1	-0.297	105.61
2.248	1.0	304.70	0.34223	1363.3	-0.29	105.61
2.367	1.0	305.85	0.3083	1369.7	-0.283	105.61
2.485	1.0	307.06	0.28026	1376.5	-0.276	105.61
2.603	1.0	308.32	0.24616	1383.6	-0.268	105.61
2.722	1.0	309.65	0.21798	1391.2	-0.26	105.61
2.840	1.0	311.05	0.18368	1399.2	-0.252	105.61
2.958	1.0	312.50	0.15531	1407.6	-0.243	105.61
3.077	1.0	314.00	0.12076	1416.4	-0.233	105.61
3.195	1.0	315.52	0.09215	1425.4	-0.224	105.61
3.313	1.0	316.99	0.06352	1434.1	-0.215	105.61
3.432	1.0	318.31	0.02866	1442.1	-0.206	105.62
3.550	1.0	319.35	0.00000	1448.4	-0.200	105.62

- Sub-channel coolant density at bundle outlet.
- Qualitatively and quantitatively both codes are very close to each other.

SUBCHANFLOW

COBRA-TF

 Predicted vs. design HFP pressure drop over the heated length.

	Design data	FLICA4	COBRA-TF (INRNE)	SUBCHANFLOW	COBRA-TF (KIT)
dP, MPa	0.09493 ± 0.0047	0.0955	0.09459	0.090959	0.091891

- Bundle pressure drop dependent on single phase turbulent friction factor correlation and in the spacer grids pressure loss coefficients.
 - Used Blasius with = $0.204Re^{-0.2}$ in both codes.
 - Used spacers grids with k= 0.0503789 value from INRNE input deck.

 The time dependent MSLB BCs at the assembly inlet and outlet are shown in the next figures

The transient lasts 230 second.

NURESAFE-SP1 Meeting, 5-6 November, Brussels

Averaged fuel Doppler temperature versus time.

NURESAFE

Averaged coolant density versus time.

NURESAFE

Averaged coolant temperature versus time

 Coolant-centered dP at time of max return to power (second 69)

	COBRA-TF (INRNE)	SUBCHANFLOW (KIT)	COBRA-TF (KIT)
dP, MPa	0.10549 (+ 0.0109)	0.098451(+0.010004)	0.106626 (+0.014735)

 Axial average coolant temperature distribution at time of max return to power (second 69)

 Axial pressure drop at time of max return to power (second 69)

 Comparison of the sub-channel coolant density at bundle outlet at time 69s

SUBCHANFLOW

COBRA-TF

- Development of a generic FORTRAN VVER FA preprocessor:
 - Suitable for COBRA-TF and SUBCHANFLOW
- Extension of the CTF.cxx API: new fine_triangular_mesh_external method taken from SCF
 - Now the Fluid mesh can be produced to be used within INTERP_2_5D in the coupling scripts.
- Results for the HFP steady state and transient has been produced by COBRA-TF and SUBCHANFLOW.
 - Those inputs can be reused for the pin-by-pin coupling with COBAYA4.
- Extension to minicores is not foreseen before the end of the project.
- A technical note summarizing the results presented here was sent the 21st of September to the partners.

THANKS FOR YOUR ATTENTION