Embedding ASMs into State Transition Diagrams

Theo Sattler, Wolfgang Ahrendt

July 7, 2000

Abstract

This report relates Abstract State Machines (ASMs) with a particular diagram type
of UML, the Sate Transition Diagrams (STDs). The principles of translating ASMs into
STDs are discussed and demonstrated in four case studies.

1 Introduction

In this report, two formalisms to model state based systems are related.

The first is the frame of Abstract State Machines (ASMs). ASMs, which formerly
were called Evolving Algebras, are defined in [Gur95, Gur97]. We assume some familiarity
with ASMs. For a general introduction, see [B6r99]. ASMs are used in many case studies
to formalize, for instance, the behavior of systems, the semantics of languages, or the
specification of hardware.

The second formalism, called Sate Transition Diagrams (STDs), forms one of the
diagram types of the Unified Modeling Language (UML), which is becoming a de facto
standard for the modeling of object oriented systems. STDs are defined in the UML
specification [Obj99]. “Sate Transition Diagrams” basically is a new name for a formalism
called “State Charts” (which did exist before UML), even if the object orientedness of
UML caused some slight modifications. For syntax and semantics of Sate Charts, see
[Har87, HN96).

Having worked with ASMs as well as with UML, we felt that it is natural to embed
the first into the second, in form of particular STDs. At least, many examples of ASMs
seem to be appropriate to be taken as an STD. We demonstrate this in four case studies,
the first two based on the famous ‘WAM paper’ of Borger/Rosenzweig [BR94], the last
two based on the Kermit protocol formalization of Huggins [Hug95].

We investigate the principles of translating ASMs, which are represented textually,
into the graphical notation of STDs, thereby embedding ASMs into UML.

2 Background

Below, we briefly discuss the statics and dynamics of both, Abstract State Machines and
State Transition Diagrams, emphasizing the differences between them.

Statics: the states

The concept of states is essentially different in ASMs and STDs. In an ASM, which
essentially is a set of rules performing updates on functions, a state is a particular inter-
pretation of all functions. Such a state gives a total characterization of the system at a
certain time. States are not syntactically present in the rules.

In a Sate Transition Diagram, states are given as syntactical entities, being the nodes
in a (hierarchical) graph. The states are meant to represent some general characteristics of

the system. Attributes of the system are only partially characterized by the states. STDs
can make use of orthogonal decomposition (see Figure 1). It is assumed that the system
is in exactly one state of each of the orthogonal component diagrams. The compound
states then are implicitly given by the product of the states of its components.

Dynamics: rules and transitions

Also, the concept of transitions and rules differs between ASMs, and STDs. ASM rules
have the form “if guard then actl, act?, ... else act3, act4, ...”. ‘if’ statements can
also be nested. Rules are not associated with a specific state, but apply globally in any
state. To determine which rules can be fired in the current state, the guards are examined.
Then, all rules whose guards are valid fire simultaneously. If updates in simultaneously
fired rules contain contradicting updates, the ASM is called inconsistent.

STD transition have explicit source, and destination state. Transitions are pictured
through an arrow from the source to the destination state. Guards, and actions are put on
these arrow as “[guard] / actl, act2, ...” (see Figure 2). If the source, and the destination
state are identical, then the transition is called internal. Such transitions are put inside
the corresponding state box. An additional feature of STDs are events. The occurrence
of events can be used as guard, and triggered in an action. Sending an event is pictured
with a **” sign (" receiver.event).

At each step, only one of the transitions leaving the same state is allowed to fire. If
two such transitions potentially could fire in the same step, they are said to be in conflict.
Nonetheless, transitions in orthogonal components fire simultaneously. Also, multiple
internal transitions can fire simultaneously. As in ASMs, the firing of multiple transitions
can lead to contradicting updates.

Modules

Distributed ASMs provide the specification of distributed systems via modules, each
modeling an independent ASM. Communication is established by public functions in each
module which are modifiable by other modules. The updates in different modules are
fired asynchronously, but still, the updates in a single module are applied simultaneously.

The module concept fits nicely into the object concept UML is based on. So, each
module can be mapped into a corresponding class. The rules of each module are translated
into a STD associated with these class.

Non-distributed ASMs can be seen as DASMs consisting of just one module.

Initialization

ASMs are assumed to run from a somehow defined initial state. The description of
this state is an integral part of the ASM’s syntax.

In STDs, the initial state is pictured with a bold dot (e). This state must be left
immediately. Initial states are also used to picture the first state in component diagrams.
Using orthogonal decomposition, each component has a individual initial state. Further
initialization must be made explicitly via transitions. To model ASM initialization in
STDs, it is advisable to use an additional dedicated initialization state which initializes
the whole system, see below.

3 Translation of ASMs into STDs

3.1 States

To characterize the states of the STD, a subset of the ASM’s functions is chosen. This
functions (not necessarily 0-ary) must have a small (finite) image. Subsequently, this

explicit prodict implicite product

[ALXBL] [A2 X B1] oo e orthogonal [1] [v] I T o
[ALX B2 J [A2 X B2 J ~) AL
° ° decomposition [B1] [B2] eoe |
° °
° °

Figure 1: Orthogonal decomposition

functions will be referred to as characterizing functions. The set of possible states for the
STD then is given by the product of these images.

Using the explicit product to picture the states in STDs rapidly leads to confusing
diagrams. To simplify the diagram, it is advisable to utilize orthogonal decomposition,
which is nicely provided by the STD notation. A suggestive splitting is given by generating
one component diagram for each characterizing function. In Figure 1, two characterizing
functions are assumed with image {A1,A2,...}, and {B1,B2,...} respectively (Notice, in
this case the bold dots in the diagrams are not to read as initial states, but as periods).
Subsequently, orthogonal decomposition is used by default.

3.2 Transitions

The translation of ASM rules into STD transitions is a bit more delicate. To ensure fitting
functionality, several measures have to be taken. Below, the process of translation is split
into several consecutive steps.

i) Expansion of ASM rules

ASMs provide nested conditions. Such conditions cannot be translated directly into STDs.
Therefore, the nested if-then-else rules must be broken down into flat if~then rules. The
resulting ASM rules now can be translated into STD transitions.

ii) Source, and destination states

ASM rules apply globally to all states. Therefore, primarily each ASM rule results in
transitions for each state of the STD. This set of transitions can be restricted taking into
account the characterizing functions appearing in the guard.

The destination state is determined through updates of characterizing functions. If
no characterizing functions are updated, the destination state is identical with the source
state.

iii) Classification of transitions

To classify transitions, their profile, i.e. the set of source and destination states is ex-
amined. Source and destination states are determined by characterizing functions in the
guard and the updates, respectively. Transitions are classified depending on the profiles.

To exemplify the following classification, a simple ASM is used. It has two character-
izing functions ch_a, and ch_b with images {A1,A2,A8}, and {B1,B2}, respectively. The
corresponding STD is given in Figure 2. For each class, example rules together with their
profile are provided. The examples only contain characterizing functions. Guards, and
actions not depending on characterizing functions do neither influence the profile, nor the

example

[B

(IN(B1)]/actll < [IN(B1)] / actl.1

[IN(B1)]/ act2 The name of the

action indicates the
corresponding

‘ ;7 A2 example.

,, act<class>.<example>

B1 B2 e.g.. actl.2 results
[IN(AL)] / act2 from the rule given
[IN(AL)] / act3a.l [/act3a.2 in example 2 of class 1

auxiliary
[guard3b] / act3b

Figure 2: Classification of transitions

[IN(BL)] / act1.2

classification. The resulting transitions are also pictured in Figure 2. The name of the
actions indicate the corresponding rule.

1. Exactly one characterizing function is updated. In this case, the transition
can be associated with the orthogonal component corresponding to the changed
characterizing function. Dependencies on other characterizing functions can be ex-
pressed via UML’s IN(state) construct.

e.g.:

e if ch.b = Bl then actl.1, ch.a := Al
=% x B1 - Al x B1
The value of the updated characterizing function (ch_a) is not restricted in the
guard. Therefore, the translation results in three transitions with source state
A1, A2, and A3 respectively and with destination state Al (see Figure 2).

e if ch.a = Al and ch_b = B1 then actl.2, ch.a := A2
= Al x Bl - A2 x B1
The value of the updated characterizing function (ch_a) is restricted to Al.
Therefore, only one transition with source state Al and destination state A2 is
generated (see Figure 2).

If char_fun is the updated characterizing function which has n possible values, then
at most n transitions are generated.

2. Several characterizing functions are updated. In this case transitions in all
orthogonal components corresponding to updated functions are generated. Other
dependencies are treated as above. A simplification of the resulting transitions can
be achieved by attaching the action to only one of the transitions, leaving the rest
empty.

e.g.:
e if ch.a = Al and ch_b = Bl then act2, ch.a := A2, ch.b := B2
Al x B1 -+ A2 x B2
The value of both updated characterizing functions is restricted to A1, and B1
respectively. A transition from Al to A2, and a transition from B1 to B2 is
generated (see Figure 2).

If ch; are the updated characterizing functions, each with n; possible values, then
at most n; transitions are generated for each function.

3. No characterizing function is updated. This implies that no change of state
occurs with respect to the STD.

(a) The transition depends on some characterizing Function. In this case,
the transition can be associated with any orthogonal component corresponding
to one of these functions. The dependencies on other characterizing functions
are expressed via UML’s IN(state) construct. The choice of the component
may be influenced by minimizing conflicting transitions (see section 3.2).

e.g.:
o if ch.a = Al and ch_b = Bl then act3a.l
= Al x B1 - Al x Bl
The source state of this transition is restricted to A1, and B1. The transi-
tion can be assigned to either Al or B1 (see Figure 2).

e if ch_.b = B1 then act3a.2
= % X Bl = % x Bl
Only ch_b is restricted. Therefore, the resulting transition should be as-
signed to B1 (see Figure 2).

(b) The transition does not depend on characterizing functions. In this

case, the transition cannot be associated with a single state.
e.g.:

if guard3b then act3b

= k X * = % X %
No restrictions on characterizing functions are given. The resulting transition
will be assigned to an ‘auxiliary’ state in a new orthogonal component (see Fig-
ure 2). All transitions which neither depend on, nor update any characterizing
function then can be associated with this state.

iv) Resolving conflicting transitions

In ASMs, multiple rules can fire at once. In STDs, the firing of multiple transitions is
allowed only, if these transitions are in separate orthogonal components. If no character-
izing functions would be chosen, for each rule a separate component could be generated,
therewith avoiding any conflicts.

The choice of characterizing functions now can force transitions originating from dif-
ferent rules to be placed in a common component. If such transitions have the same source
state, and non exclusive guards, a conflict arises.

Due to the ASM concept of rules, the translation so far very likely results in such
conflicting transitions. If the transitions cannot be put in different components, the
conflicting transitions must be reformulated, such that (a) the resulting transitions are
no longer in conflict, and (b) the action of the resulting transitions are the same as the
the sum of the actions produced by the previously conflicting transitions under the same
conditions.

E.g., assume two transitions t1 and t2.

e if guard-1 then action_1
e if guard_2 then action_2

If guard_1, and guard-2 are not contradictory, then three new transitions must be generated
as follows.

e if guard_1 and guard_2 then action_1, action_2

e if guard-1 and not guard_2 then action_1

e if not guard_1 and guard_2 then action_2

Doing the reformulation mechanically, the problem of absurd transitions, i.e. transi-
tions never taken, arises. Even if in ASMs these transitions are implicitly present, too,
there they do not produce syntactical overhead. In STDs, such transitions make diagrams
confusing. And especially if orthogonal decomposition is not used, the syntactic overhead
produced can be enormous.

Making the problem even worse, the action part of such transitions can contain con-
tradicting updates. If the contradicting updates concern non characterizing functions, the
problem is only semantic. But if the concerned functions are characterizing, a syntactic
problem arises. The resulting transition would have two different destination states. This
is syntactically not possible (there is just one arrow head).

In this case, it must be explicitly shown that such transitions are never taken, and
appropriate guards must be added to the original rules. An example of such a situation
is given in section 5.

3.3 Modules
Distributed ASMs

Modules are a feature of distributed ASMs. Each module represents an independent
ASM communicating with the other modules via public functions. After initialization,
the modules run asynchronously, i.e. firing of rules is not synchronized between modules.
Nonetheless, the actions are still ensured to be atomic.

Each ASM module can be mapped into a UML class described through an associated
STD. Objects of this class then run independently, providing the asynchronous behavior
required by DASMs. A schema of the generated STDs is given in Figure 3.

To provide initialization, synchronization, and the global functions defined in the ASM,
a additional ‘system’ STD is introduced. This diagram consists mainly of two states, one
doing the initialization, and the other denoting the running system. Global functions
are assigned with this ‘system’ class. For simplification, they can be used in other STDs
without reference to the ‘system’ object, e.g. System.sin(z) can be referred to as sin(z).
This usage is unambiguous because there is only one ‘system’ object, and, due to the
ASM origin, the function names are unique.

Each module is translated into a separate STD. On the root level, this STD consists
of two states. The first state represents the need of initialization. It is left upon receiving
an event signaling the end of the initialization in the ‘system’ object. This is necessary
to synchronize the start of a run. The second state consists of the states, and transitions
implied through the characterizing functions. Here, for the first time the concept of events
provided by STDs is utilized.

Final states are not generated. This is due to the ASM semantic where no explicit
finial states are given either.

Non-distributed ASMs

Non distributed ASMs can be seen as distributed ASMs consisting of just one module.
Naturally, there is no distinction between global and local function.

The ‘system’ state can be skipped. All the initialization can be done in the local
initialization state. Synchronization is not necessary.

A schema of the STD for a non-distributed ASM is given in figure 4.

4 Case study: Prolog machine (1st version)

The following ASM is taken from [BR94], section 1.1. It defines an operational semantics
of Prolog. We do not explain the ASM here. Also, we do not give the full rules, as

DASM System (scheme)

Initialisation

@—/ SomeObject := new SomeClass, j‘

Upon entering the System,
all necessary objects (modules)
are generated.

entry /

Ty
SomeObject.SomeMethod(SomeParam) = InitValue

/™ all.run()

Upon entry of the Initialisation state,
all objects are set to a defined initial state.

To garanty an synchonized
start of a run, a run signal

is sent to ‘all’ objects, where
‘all' is the set of all objects
created in the previous steps.

Finally the
system runs.

DASM Module (scheme)

run /

Run

|/

p
o

Being in the state 'Initial’,
the object just waits for successful
initialisation in the 'System’,

For syncronisation, the class
waits for a run signal.

Upon receiving this signal goes
into run state.

\idicated by the event 'run’.

The run state contains the states, and
transitions derived from the ASM.

i

/

Figure 3: Schema for DASM system, and module diagram

ASM (scheme)

-

Initial

~

.7
-

entry /)
SomeMethod(SomeParam) = InitValue

~

J

object is not necessary.

Due to the existence of only one module, all Initialisation
can take place in the corresponding object. A system

The run state can be entered unconditioned imideately
after initialisation. As in DASM case, it contains the
states, and transitions derived from the ASM.

)

Figure 4: Schema for a non distributed ASM

some abbreviations are not expanded. The form presented below suffices to discuss the
translation into an STD.

The following ASM is taken from an ASM specification of a Prolog machine as given
in [BR94] section 1.1. It defines an operational semantics of Prolog.

Characterizing functions

As characterizing functions mode : {Select,Call}, and stop : {Running,Success,Fail} are
chosen. Therefore, the states are given through {Select,Call} x {Running,Success,Fail}.

Flat transition rules

As in the original ASM specification, all transition rules implicitly have an additional
guard stop = running. For clarity of the following translation, the equalities, and updates
involving a characterizing function are emphasized.

1.
if decglesq = emptylist
then stop := Success
2.
if is_user_defined(fst(goal)) and mode = Call
then extend NODE by ...
mode := Select
3.
if fst(fst(decglseq)) = empty_list
then decglseq := rest(decglseq)
4.
if is_user_defined(fst(goal)) and mode = Select and
cands = empty_list and father = root
then mode := Fail
5.
if is_user_defined(fst(goal)) and mode = Select and
cands = empty_list and not father = root
then currendnode := father
mode := Select
6.
if is_user_defined(fst(goal)) and mode = Select and
not cands = empty_list and Phi = nil
then cands:= rest(cands)
7.
if is_user_defined(fst(goal)) and mode = Select and
not cands = empty_list and not Phi = nil
then currnode := father
cands := rest(cands)
mode := Call
decglseq(fst(cands)) := new_decglseq
vi:=vi+1
8.
if fst(goal) = true
then decglseq := cont
9.

if fst(goal) = fail and father = root
then stop := Fail

10.
if fst(goal) = fail and not father = root

then currendnode := father
mode := Select
11.
if fst(goal) = cut
then father := cutpt
decglseq := cont

The following table shows the profile and classification of each rule. Also, the source
states of the resulting transitions are given.

rule profile class. associated with
1. % x Running — * x Running 3(a) Running
2. Call x Running — Select x Running 1 Call
3. * X Running — * X Running 3(a) Running
4. Select x Running — Select x Fail 1 Running
5. Select x Running — Select x Running 3(a) Select or Running
6. Select x Running — Select x Running 3(a) Select or Running
7. Select x Running — Call x Running 1 Select
8. % X Running — * X Running 3(a) Running
9. * x Running — x x Fail 1 Running
10. % x Running — Select x Running 1 Select and Call
11. % x Running — * x Running 3(a) Running

Fortunately, there are no conflicting transitions to be resolved. The result of the trans-
formation is given in Figure 5. To demonstrate the usefulness of the exploited orthogonal
decomposition, a translation not using orthogonal decomposition is given in Figure 6.

For visualization, Cayenne’s CASE tool ObjectTeam is used. Unfortunately, Ob-
JjectTeam sets some restrictions on the syntax of transitions. Principally, this restrictions
are not given in UML. To circumvent this restrictions, the concerned statements are placed
in UML comment boxes. Within the transition, an eval() refers to the current statement
applying. To make this fully UML conform, it would have to be defined as stereotype.

5 Case study: Prolog machine (2nd version)

The following ASM is a refinement of the previous. It is also taken from [BR94], described
in section 1.3. Now, the Select state of the previous example is split in to three new states.

Characterizing functions

The characterizing functions are chosen as above, but the image of mode now is {Call,
Enter, Try, Retry}. The functionality of mode Select is split now over the modes Enter,
Try, and Retry.

Flat transitions rules

As in the original ASM specification, all transition rules implicitly have an additional
guard stop = running. Again, the equalities and updates involving a characterizing func-
tion are emphasized.

1.
if decglesq = emptylist
then stop := Success

Prolog machine (1st version)

Init

o— =
try / eval(init
en.—r}/— eval(init)
"init" "abbreviations "
root :=n_0, cands = cands(currendnode)
currendnode :=n_1, cont = [<rest(goal),cutpt> | tail(decgjseq)]
father(n_1) :=n_0Q, cutpt = snd(fstgdecglseq))
decglseq(n_1) = [<goa| n_0>], father = father(currendnode)
s(n_1) := empty_list, new_decglseq =
vi := 0, <Bdy’(clause(cll9fst(cands))), father> | cont] Phi
db := program Phi = mgu(act,Hd'(clause(cll(fst(cands)))))
Run
extend NODE with tmp_1,...,tmp_n with
father(tmp_i) := currendnode
cII(tmp)= nth(procdef(act db),i)
cands := (tmp_1,...,tmp_n)
exhtendend
where
/ Select \ | n=length{procdef{act,db}} .
[IN(Running) d dact
AND is_user_defined(act
AND NOT cands = empty_list [IN(Running)
AND Phi:"n"’i‘l’]‘ S = emply_lis AND is ust/ere vda?flned(act)] Call]
/ cands := rest(cands)
[IN(Running)] [act = fail
AND |s_u§er_def|ned|(act) S AND NOT father = root]
AND cands = empty_list [IN(Runnin
g g) AND is_user_defined(act
AND NOT father = roof] AND NOT cands = empty Jist AND NOT Phl) nil]

/ currendnode := father

/eval

currendnode ;= fst(cands)
cands := rest(cands)
decglse (fst(cands))
F<de(2clausel cllgst cands)))),father>] | cont] Phi
s(st(candls)) =sP
Vii=vi+

K Running \
[decglseq = empty_list]

[goal empty_list]
| decglseq := rest(decglseq)
[act = fail
AND father = root]

[fst%goal? = true]
ecglseq := cont
[fst(goal) = cut]

| father := cutpt, decglseq :=cont
[act = fail AND NOT father = root]
/ currendnode := father

[Select AND is_user_defined(act)
AND cands = empty_list AND father = root]

Figure 5: STD for Prolog machine (1st version, orthogonal product)

10

Prolog machine (1st version - cantesian coding)

"init"

root :=n_0, "abbreviations"

currendnode := n 1, cands = cands(currendnode)

father(n_1) :=n_| cont = [<rest(gzoal),cutpt> | tail(decgjseq)]

decglseq(n 1):= [<goa| n_0>], cutpt = snd(fst(decglseq))

s(n 1) = empty_list, father = father(currendnode) .
new_decglseq = [<Bdy'(clause(cll(fst(cands))), father> | cont] Phi

db = program Phi = mgu(act,Hd’(clause(cll(fst(cands)))))

o Run

Select X Running

[is_user defmedéfst(gool))

AND NOT cands = empty_list] Select X Success
AND mgu(act,Hd’ (clausel(cll(fst(cands))))) nil]
Icands := rest(cands) [decglseq(curmode) = empty_list]

[is_user_defipeﬁ(fst(goola) AND cands = empty_list |'
A/ c%rrecr{(lj-ngzjee'r- fz:\(t)l?ér [|s user defmed(fst(gool))

o0al = empty list —AND cands = empty _list
l /decglsrt)e()]l = r(]-)st(decglseq) AND father= root]'
[fstggoal) = true] [act = fail Select X Fail
decglseq := cont AND father = root]
[fst(goal) = cut]
[father := cutpt, decglseq := cont

[act = fail AND NOT father = root]
/ currendnode := father

[is_user_defined(fst(gool))]
[eval

entry / eval(init)

extend NODE with tmp_1,...,tmp_n with
father(tmp_i) := currendnode

li(tmp_i) := nth(procdef(actdb) i)
lis_us er _defined(fst(gool)) ¢ !
AND NOT cands = empty_list c?ndds d(tmp -tmp_n)
AND NOT Phi = nil] eﬁe” en
leval where

n = length{procdef{act,db}}

f Call X Running \

[act = fail
[fst(goal) = true] AND NOT father = root]
/ decglseq := cont / currendnode := father

fst(goal t = fai -

s sgfgtah)er .Euc]utpt decglseq = cont [1aCt = fail & father = roofl—> call X Success
[goal = empty_list] .

/ decglseq := rest(decglseq) /w[decglseq(currnode):empty_llst] Call X Fail

currendnode := fst(cands)
cands := rest(cands
decglseq(fst(cands)) :=
[<Bdy’ clausel(cII(fst(cands)))) father>] | cont] Phi
s(fst(cands)) := s P
vii=vit+l

Figure 6: STD for Prolog machine (1st version, direct product)

11

10.

11.

12.

13.

14.

15.

if

then

if

then

if

then

if

then

then

if
then

if
then
if
then

if
then

if

then

if
then

if
then

if

then

if

then

is_user_defined(fst(goal)) and mode = Call and
clause(procdef(act,db)) = nil and b = bottom
stop := Fail

is_user_defined(fst(goal)) and mode = Call and
clause(procdef(act,db)) = nil and not b = bottom
mode := Retry

is_user_defined(fst(goal)) and mode = Call and
not clause(procdef(act,db)) = nil

cll := procdef(act,db))

mode := Try

ct:=b

goal = empty_list
decglseq := rest(decglseq)

act = true
decglseq := cont

act = fail and b(b) = bottom

stop := Fail

act = fail and not b(b) = bottom
b := b(b)

act = cut

b := cutpt

decglseq := cont

mode = Try
push tmp with ...
mode := Enter

mode = Enter and Phi = nil and b = bottom
stop := Fail

mode = Enter and Phi = nil and not b = bottom
mode := Retry

mode = Enter and not Phi = nil
decglseq := new_decglseq

s := s Phi
vi:=vi+1
mode := Call

mode = Retry and clause(cll(b)) = nil and
b(b) = bottom
stop := Fail

mode = Retry and clause(cll(b)) = nil and

not b(b) = bottom
b := b(b)

12

16.

if mode = Retry and not clause(cll(b)) = nil
then fetch_state_from(b)

cll := cll(b)

cll(b) := cll(b)+

ct := b(b)

mode := Enter

The following table shows the profile, and classification of each rule. Also, the source
states of the resulting transitions are given.

rule profile class. associated with
1. % x Running — % x Success 1 Running
2. Call x Running — Call x Fail 1 Running
3. Call x Running — Retry x Running 1 Call
4. Call x Running — Try x Running 1 Call
5. % x Running — % X Running 3(a) Running
6. * x Running — % x Running 3(a) Running
7. % x Running — * X Fail 1 Running
8. % X Running — % x Running 3(a) Running
9. % X Running — * x Running 3(a) Running
10. Try x Running — Enter x Running 1 Try
11. Enter x Running — Enter x Fail 1 Running
12. Enter x Running — Retry x Running 1 Enter
13. Enter x Running — Call x Running 1 Enter
14. Retry x Running — Retry x Fail 1 Running
15. Retry X Running — Retry x Running 3(a) Retry or Running
16. Retry x Running — Enter X Running 1 Retry

With this mapping, the problem of confliction transitions arrises. Rules 1, 5, 6, 7, 8,
and 9 are in conflict with rules 11, and 14.

A first step to resolve the conflicts could be to place rules 5, 6, 8, and 9 in an auxiliary
state in a new orthogonal component. This can be done because these rules do not change
characterizing functions.

Now, rules 7, 11, and 14 can be placed into a single transition, combining their guards
via or . This can be done due to the fact that they have the same destination state, and
the same action (namely non).

The only conflict left is the conflict of rule 1 with rule 11, and 14. Unfotunately,
these rules can not be combined, because they have contradicting updates (rule 1: stop
:= success, rule 11, 14: stop := Fail). To resolve this conflict, it must be shown, that rule
1 is never triggered together with rule 11, or 14.

As mentioned in [BR94] section 1.1, it can even be shown that rules 1, 5, 6, 7, 8, and 9
are only triggered in Call mode. Including this infomation in the rules (by placeing mode
= Call as an additional guard in these rules) results in the following classification of rules.

13

rule profile class. associated with

1. Call x Running — Call x Success 1 Running
2. Call x Running — Call x Fail 1 Running
3. Call x Running — Retry x Running 1 Call

4. Call x Running — Try x Running 1 Call

5. Call x Running — Call x Running 3(a) Running
6. Call x Running — Call x Running 3(a) Running
7. Call x Running — Call x Fail 1 Running
8. Call x Running — Call x Running 3(a) Running
9. Call x Running — Call x Running 3(a) Running
10. Try x Running — Enter x Running 1 Try

11. Enter x Running — Enter x Fail 1 Running
12. Enter x Running — Retry X Running 1 Enter
13. Enter x Running — Call x Running 1 Enter
14. Retry x Running — Retry x Fail 1 Running
15. Retry x Running — Retry x Running 3(a) Retry or Running
16. Retry x Running — Enter X Running 1 Retry

Using the new rules, there are no more conflicts. The result of the transformation is
given in Figure 7. Again, a translation not using orthogonal decomposition is given, see
Figure 8.

6 Case study:
Alternating Bit Protocol (asymetric version)

In this example, an ASM specification of an alternating bit protocol is translated into a
STD. The ASM specification is taken from [Hug95], section 2. The ASM does not contain
nested conditions. The resulting STD is given in Figures 9 to 12.

Characterizing functions

As characterizing functions the two functions SenderBit : bits and ReceiverBit : bits
are chosen for the sender and receiver module, respectively. For the other modules, no
characterizing function is chosen.

Classified transitions

In this example, the choice of characterizing functions and the specific guards results in a
duplication of rules (e.g.: ‘Bit(SenderInMsg) = SenderBit’ generates ‘Bit(SenderInMsg)
= SenderBit = 0°, and ‘Bit(SenderInMsg) = SenderBit = 1°).

Module: Sender

Transitions resulting from ProcessAck, Timeout, and ClearMessage are in conflict. But,
ReTransmit, and ClearMessage are independent from the current state. Therefore, the
conflict can be resolved by putting them in orthogonal components.

Rule: ReTransmit (x — %)
if Timeout
then ReceiverQueue := ReceiverQueue
++ Msg(SenderFile(SenderNo),SenderBit)
Timeout := false
Rule: ProcessAck (SenderBit=0 — SenderBit=1)

14

Prolog machine (2nd version)

— "abbreviations"

init cands = cands(currendnode)

bottom :=n_0, cont = [<rest(goal),cutpt> | tail(decgjseq)]
b:=n_0, cutpt = snd(fst(decglseq))

decglseq := [<goal,n_0>], father = father(currendnode)

s ;= empty_list, - new_decglseq =

vi:=0, entry / eval(init) [<de’(clause(cllgfst(candsg)), father> gcont] Phi
db := program Phi = mgu(act,Hd'(clause(cll(fst(cands)))))

Run
[IN(Running) AND is_user_defined(act)
AND clause(procdef(act,db)) = nil —>K Retry
AND NOT b = bottom]

[IN Running) AND
NOT clause(cll(b)) = nil AND
NOT b(b) = bottom]

/b :=Db(b)

[IN(Running) AND [IN(Running) AND NOT Phi = nil] N
is_user_defined(act) AND [decglseq = new_decglseq i
— i . |) IN(R AND
NOT dausefprocge(actb) =i’ ““FShi WA+ INRuning) NOT ciauselcib) = ni

AND Phi=nil /fetch_state_from(b),
AND b not bottom] cll := cli(b),
cll_of b=cll_of b+,
ct == b(b)

PUSH temp WITH
store_state_in(temp)
cli9temp) := cli+

Try ENDPUSH

’ " [IN(Running)]
/ eval

[IN(Call) AND goal = empty_lis(] ——I[IN(Call) AND decglseq = emty_list]

/ decglseq := rest(dec?lseq) [IN(Enter) AND Phi = nil
[IN(Call) AND act = true I ANDb = bottom]

/ decglseq :=cont .
[IN(CaI% ANqD act=fal AND | [In(Retry) AND clause(cli(b)) = nil
NOT b = bottom] AND b(b) = bottom]

/b =h(b) [IN(Call) AND is_user_defined(act)

[IN(Call) AND act = cut] | AND clause(procdef(act,db)) = nil AND b = bottom]
/b := cutpt, decglseq := coy

\—[IN(CaII) AND act = fail AND b = bottom]

Figure 7: STD for Prolog machine (2st version, orthogonal product)

15

Prolog machine (2nd version - explicite product)

"abbreviations"

[is_user_defined(act) AND
NOT clause{procdef(act,db)) = nil]
/ cll := procdef(act,db), ct :=b

clause(procdef(act,db)) = nil

"init" cands = cands(currendnode)
bottom :=n_0, cont = [<rest(goal),cutpt> | tail(decgjseq))
b:=n_0, | — cutpt = snd(fst(decglseq))
decglseq := [<goal,n_0>], [entry / eval(init) || b = h(currendnode)
s .= empty_list, new_decglseq =
vi:=0, <Bdy'(clause(cll9fst(cands))), b> | cont] Phi
db := program Phi = mgu(act,Hd'(clause(cll(fst(cands)))))
Run
[is_user_defined(act) Call X Running
AND clause(procdef(act,db)) = nil T
AND b = bottom] [act = true]
: [act = fail / decglseq := cont decglseq(currmode
Call X Fail AND b = bottom] | [act = cut] = empty_list]

/ b := cutpt, decglseq := cont
[goal = empty_list?
| decglseq = rest(desglseq)

[goal = fail AND

NOT b = bottom]
[is_user_defined(act) AND

Call X Success

I'b = b(b)

AND NOT b = bottom]

Retry X Fail

Retry X Running [clause(cll(b)) = nil

AND b(b) = bottom]

[clause(cllb) AND

[Phi = ni

AND NOT b = bottom]

{
J Enter X Running]7

NO
/b

T b(b) = bott
::b((b)) ottom]

[not clause(cllb) = nil;
/ fetch_state_from(b),
cll := cli(b),
cll_of_b=cll _of b+,
ct :=b(b)

[Phi not nil]
/s := s Phi,
vi=vit+1l

[Phi = nil
Jeval --....__.

PU

EN

store_state_in(temp)
cll9temp) := cll+

L
. AND b = bottom]
Enter X Fail

SH temp WITH

DPUSH

I

Try X Running J

Figure 8: STD for Prolo

g machine (2st version, direct product)

16

System : ABP (asymetric version)

/
Sender := new Sender,

Receiver := new Receiver,
SenderCommunicate := new SenderCommunicate,
eceiverCommunicate := new ReceiverCommunicate,
SenderLoseMessage := new SenderLoseMessage,
ReceiverLoseMessage := new ReciverLoseMessage,

Timeout := new Timeout

¢ R

.

-~

entry/ Sender.SenderlnMsg := Receiver.ReceiverinMsg = undef,
Sender.SenderQueue := Receiver.ReceiverQueue = undef,
Sender.SenderNo := Receiver.ReceiverNo = undef,
eval(initReceiverFile)

/" all.run()

Initial

-

"initReceiverFilef
forall x >=0:
Receiver.ReceiverFile(x) := undef

Figure 9: STD for ABP System, asymmetric version

Sender (ABP asym)

Run

(eandarRit = 0 k
‘ SenderBit=0 < ‘

[Defined'(L\S,\?SderMsg) Receiver ReceiverQueue := Receiver.ReceiverQueue [Defined'(L\SNeSderMsg)
Bit(SenderlnMsg) = 0] | g+ Meg(Senderfile(SenderNo+1) Flip(SenderBt) Bit(SenderlnMsg) = 1]
/eval - /eval
| JE—
a > SenderBit = 1J
v
"ReTrans" $
Receiver.ReceiverQueue := Receiver.ReceiverQueue
run ++ Msg(SenderFile(SenderNo), SenderBit), (ClearMessage w
Timeout.Timeout := false
[Defined(SenderinMsg) AND NOT Bit(SenderinMsg) = 1]
| Clear(SenderinMsg,

[Timeout.Timeout = true] / eval(ReTrans)|

ReTransmit w

)

Figure 10: STD for ABP Sender, asymmetric version

17

Receiver (ABPasym)

[T | —
|

run

AcknowledgeMessage "AccMess"

[Fecommofe)

[Defined(ReceiverlnMsg)
AND

[Defined(ReceiverinMsg)
AND
Bit(ReceiverinMsg) = 0 ReceiverNo := ReceiverNo + 1

Bit(ReceiverlnMsg) = 0

ReceiverFile(ReceiverNo) := Data(ReceiverMsg),
rrrrrrrrrrrrrrrrrrrrr / eval

S BoraiverRit = 1 | ‘

° >1 ReceiverBit = 1

Sender.SenderQueue := Sender.SenderQueue
[Defined(ReciverinMsg)] ++ Msg(Null,Bit(ReceiverinMsg)),
@ > /eval(AccMess) fo-eeeeeee- Clear(ReceiverinMsg)

Figure 11: STD for ABP Receiver, asymmetric version

Run

K Tineout (ABP asym) \
\

[Sender.SenderQueue = Receiver.ReceiverQueue = EmptyQueue
AND Sender.SenderinMsg = Receiver.ReceiverinMsg = undef]
fun | Timeout := true

Figure 12: STD for ABP Timeout, asymmetric version

/ SenderCommunicate (ABP asym) \
(Run \
[Undefined(Sender.SenderinMsg) AND NOT Sender.SenderQueue = EmptyQueue]
| Sender.SenderlnMsg := Head(Sender.SenderQueue),
un Sender.SenderQueue := Tail(Sender.SenderQueue)

/

~

ReceiverCommunicate (ABP asym)

Run

[Undefined(Receiver.ReceiverinMsg) AND NOT Receiver.ReceiverQueue = EmptyQueue]

I Receiver.ReceiverinMsg := Head(Receiver.ReceiverQueue),
fun Receiver.ReceiverQueue := Tail(Receiver.ReceiverQueue)

Nt B

Figure 13: STD for ABP Communicate, asymmetric version

18

f SenderLoseMessage

ReceiverLoseMessage \

(Run w (Run
&| it run - ;
[ve<= Sender.SenderQueueu ru el [v <= Receiver. RecelverQueue]J

| Sender.SenderQueue := v | Receiver.ReceiverQueue

Figure 14: STD for ABP LoseMessage, asymmetric version

if Defined(SenderInMsg) and Bit(SenderInMsg)=SenderBit=0
then ReceiverQueue := ReceiverQueue
++ Msg(SenderFile(SenderNo),Flip(SenderBit))
SenderBit := Flip(SenderBit)
SenderNo := SenderNo + 1
Rule: ProcessAck (SenderBit=1 — SenderBit=0)
if Defined(SenderInMsg) and Bit(SenderInMsg)=SenderBit=1
then ReceiverQueue := ReceiverQueue
++ Msg(SenderFile(SenderNo),Flip(SenderBit))
SenderBit := Flip(SenderBit)
SenderNo := SenderNo + 1
Rule: ClearMessage (x —)
if Defined(SenderInMsg)
then Clear(SenderInMsg)

Module: Receiver
Here, AcceptDatum and AcknowledgeMessage are in conflict. This conflict can be resolved
similar to the sender module.

Rule: AcceptDatum (ReceiverBit=0 — ReceiverBit=1)
if Defined(ReceiverInMsg) and
Bit(ReceiverInMsg)=ReceiverBit=0
then ReceiverFile(ReceiverNo := Data(ReceiverInMsg)
ReceiverNo := ReceiverNo + 1
ReceiverBit := Flip(ReceiverBit)
Rule: AcceptDatum (ReceiverBit=1 — ReceiverBit=0)
if Defined(ReceiverInMsg) and
Bit(ReceiverInMsg)=ReceiverBit=1
then ReceiverFile(ReceiverNo := Data(ReceiverInMsg)
ReceiverNo := ReceiverNo + 1
ReceiverBit := Flip(ReceiverBit)
Rule: AcknowledgeMessage (* —)
if Defined(ReceiverInMsg)
then SenderQueue:= SenderQueue
++ Msg(Null,Bit(ReceiverInMsg))
Clear(ReceiverInMsg)

Module: SenderCommunicate
if Undefined(SenderInMsg) and

not SenderQueue = EmptyQueue
then SenderInMsg := Head(SenderQueue)
SenderQueue := Tail(SenderQueue)

19

Module: ReceiverCommunicate
if Undefined(ReceiverInMsg) and

not ReceiverQueue = EmptyQueue
then ReceiverInMsg := Head(ReceiverQueue)
ReceiverQueue := Tail(ReceiverQueue)

Module: SenderLoseMessage
if v < SenderQueue
then SenderQueue := v

Module: ReceiverLoseMessage
if v < ReceiverQueue
then ReceiverQueue := v

Module: Timeout
if SenderQueue = ReceiverQueue = EmptyQueue and

SenderInMsg = ReceiverInMsg = undef
then Timeout := true

7 Case study:
Alternating Bit Protocol (symmetric version)

This example is a symmetric version of the previous ASM. It is taken from [Hug95], section
3. The modules for sender, and rceiver are specified symetricaly. Sender, and receiver are
disinguished using the fuction “Me”. The resulting STD is given in Figure 15 to 18.

Characterizing functions

As characterizing functions for the Sender/Receiver Module the functions mode : { Put, Get}
is chosen. For the other modules no characterizing function is chosen.

Classified transitions

Module: Sender/Receiver Template

if Mode = Put and Me = Sender

then Q(You) := Q(You)
++ Msg(File(MyNum+1),(MyNum+1)mod 2)
LastMsg := Msg(File(MyNum+1,(MyNum mod 2)
MyNum := MyNum + 1
Mode := Get

if Mode = Put and not Me = Sender

then Q(You) := Q(You) ++ Msg(Null,(MyNum)mod 2)
LastMsg := Msg(Null,(MyNum mod 2)
MyNum := MyNum + 1
Mode := Get

if Mode = Get and Defined(InMsg(Me)) and
Num(InMsg(Me))=(MyNum mod 2) and Me = Receiver

then File(MyNum) := Data(InMsg(Me))
Mode := Put

20

System : ABP (symetric version)

Sender := new SenderReceiverTemplate,
Receiver := new SenderReceiverTemplate,
SenderCom := new CommunicateTemplate,
@ ——ReceiverCom := new CommunicateTemplate,
SenderLose := new LoseMessageTemplate,
ReceiverLose := new LoseMessageTemplate,
SenderTimeout := new TimeoutTemplate,
ReceiverTimeout := new TimeoutTemplate

“init"
InMsg(Sender) := InMsg(Receiver) = undef,

Init

.| Receiver.LastMsg := Msg(Null, -1) ,

entry /
Sender.Me := Sender, Receiver.You := Sender,
Sender.You := Receiver, Receiver.Me := Receiver,
Sender.MyNum := 0, Receiver.MyNum := 0,
SenderCom.Me := Sender, ReceiverCom.Me := Receiver,
SenderLose.Me := Sender, ReceiverLose.Me := Receiver,
SenderTimeout.Me := Sender, Receiver.Timeout := Receiver,
SenderTimeout.You := Receiver, ReceiverTimeout.Me := Sender|

eval(init)

Timeout(Sender) := Timeout(Receiver) = false,

forall x : Receiver.File(x) := undef, ‘

\\ Receiver.LastMsg := Msg(Null, -1) I~ all.run()

Run J

Figure 15: STD for ABP System, symmetric version

if Mode = Get and Defined(InMsg(Me)) and
Num(InMsg(Me))=(MyNum mod 2) and
not Me = Receiver

then Mode := Put

if Mode = Get and Defined(InMsg(Me)) and
not Num(InMsg(Me))=(MyNum mod 2)
or Timeout(Me)

then Q(You) := Q(You) ++ LastMsg
Timeout(Me) := false

if Mode = Get and Defined(InMsg(Me))

then Clear(InMsg)

Module: Communication Template
if Undefined(InMsg(Me)) and not Q(Me) = EmptyQueue
then InMsg(Me) := Head(Q(Me))
Q(Me) := Tail(Q(Me))

Module: LoseMessage Template
if v < Q(Me)
then Q(Me):=v

Module: LoseMessage Template
if Undefined(InMsg(Me)) and Q(Me) = EmptyQueue and
Undefined (InMsg(You)) and Q(You) = EmptyQueue
then Timeout(Me) := true

21

SenderReceiverTemplate

Run
| Put c
Q(You) := Q(You) ++ Msg(File(MyNum+1),(MyNum+1) mod2),
[Me = Sender] LastMsg := Msg(File(MyNum+1),(MyNum+1) mod2),
leval .| MyNum := MyNum+1
[Defined(InMsg(Sender.Me))
Q(You) = Q(You) ++ Msg(Fie(NulL (MyNume1) mod2) and Num(Ini Mnge%)E(MyNu?'l mod 2)
2 ou) := Q(You) ++ Msg(File(Null, um+1) mod2), and not Me = Receiver]
[not M‘je;j?ﬁ’{?ﬂ ,,,,,,, LastMsg := Msg(NuII,(My?\Jumﬂ) mod%), ﬁ
MyNum := MyNum+1
fun JDefine (InMsg(Me))
and Num| InN(Ijs’gA(Me)%: ?MyN]um mod 2)
and Me = Receiver]
4 Get N /‘eval
_ [(Defined(InMsg(Me)) and ‘
[Me = Sender] not Num(InMsg(Me)) = (MyNum mod 2))
N 0; T_imeout(Mef)]I File(MyNu
= Ti t:= .
[Me = Receiver] \/ Timeout := false J Data(InMsg(Me)

Clear

[Defined(InMsg(Me)]
| Clear(InMsg)

Figure 16: STD for ABP SenderReceiver Template, symmetric version

CommunicationTemplate \

| (Run w InMsg(Me) := Head(Q(Me)),
funﬁuundefined(lnMSg(Me) and J ,,,,, Q(Me) := Tail(Q(Me))
al

not Q(Me) = EmptyQueue] / ev:

/

Figure 17: STD for ABP Communicate Template, symmetric version

/ LoseMessageTemplate \ TimeoutTemplate

/ Run \
: [Undefined(InMsg(Me))

and Q(Me? = EmptyQueue

and Undefined(InMsg(You)
and q(You) = EmptyQueue
Tineout(Me) := true y,xk/eval

Init run

Figure 18: STD for ABP LoseMessage, and Timeout Template, symmetric version

22

References

[B6r99]

[BR94|

[Gur95]

[Gur97]

[Har87]
[HN96]
[Hug95]

[Obj99]

E. Borger. High Level System Design and Analysis using Abstract State Ma-
chines. In D. Hutter and W. Stephan and P. Traverso and M. Ullmann, editor,
Current Trends in Applied Formal Methods (FM-Trends 98), number 1641 in
LNCS, pages 1-43. Springer-Verlag, 1999.

E. Borger and D. Rosenzweig. The WAM - Definition and Compiler Correctness.
In C. Beierle and L. Plimer, editors, Logic Programming: Formal Methods and
Practical Applications, Studies in Computer Science and Artificial Intelligence,
chapter 2, pages 20-90. North-Holland, 1994.

Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Borger, editor, Spec-
ification and Validation Methods, pages 9-36. Oxford University Press, 1995.

Y. Gurevich. May 1997 draft of the ASM guide. Technical Re-
port CSE-TR-336-97, University of Michigan Department of Electri-
cal Engineering and Computer Science, May 7, 1997. available at
ftp://ftp.eecs.umich.edu/techreports/cse/1997/CSE-TR-336-97.ps.Z.

D. Harel. Statecharts: A visual formalism for complex system. Science of Com-
puter Programming, 8(3):231-274, 1987.

D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts. ACM
Transactions on Software Engineering and Methodology, 5(4):293-333, 1996.

J. Huggins. Kermit: Specification and Verification. In E. Bérger, editor, Speci-
fication and Validation Methods, pages 247-293. Oxford University Press, 1995.

Object Management Group. OMG Unified Modelling Lan-
guage Specification, Version 1.3, June 1999. available at
http://www.rational.com/uml/index. jtmpl.

23

